These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 25643993)
1. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. Sprick RS; Jiang JX; Bonillo B; Ren S; Ratvijitvech T; Guiglion P; Zwijnenburg MA; Adams DJ; Cooper AI J Am Chem Soc; 2015 Mar; 137(9):3265-70. PubMed ID: 25643993 [TBL] [Abstract][Full Text] [Related]
2. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications. Regulacio MD; Han MY Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703 [TBL] [Abstract][Full Text] [Related]
3. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Zou Z; Ye J; Sayama K; Arakawa H Nature; 2001 Dec; 414(6864):625-7. PubMed ID: 11740556 [TBL] [Abstract][Full Text] [Related]
4. Efficient visible light driven photocatalytic hydrogen production from water using attapulgite clay sensitized by CdS nanoparticles. Zhang J; He R; Liu X Nanotechnology; 2013 Dec; 24(50):505401. PubMed ID: 24284430 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts. Horiuchi Y; Toyao T; Takeuchi M; Matsuoka M; Anpo M Phys Chem Chem Phys; 2013 Aug; 15(32):13243-53. PubMed ID: 23760469 [TBL] [Abstract][Full Text] [Related]
6. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution. Wang DH; Wang L; Xu AW Nanoscale; 2012 Mar; 4(6):2046-53. PubMed ID: 22327298 [TBL] [Abstract][Full Text] [Related]
7. Pathways towards Boosting Solar-Driven Hydrogen Evolution of Conjugated Polymers. Liu Y; Li B; Xiang Z Small; 2021 Aug; 17(34):e2007576. PubMed ID: 34160904 [TBL] [Abstract][Full Text] [Related]
8. Visible light water splitting using dye-sensitized oxide semiconductors. Youngblood WJ; Lee SH; Maeda K; Mallouk TE Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000 [TBL] [Abstract][Full Text] [Related]
9. Conjugated Microporous Polymer Nanosheets for Overall Water Splitting Using Visible Light. Wang L; Wan Y; Ding Y; Wu S; Zhang Y; Zhang X; Zhang G; Xiong Y; Wu X; Yang J; Xu H Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28833545 [TBL] [Abstract][Full Text] [Related]
10. Hypercrosslinked Polymers as a Photocatalytic Platform for Visible-Light-Driven CO Schukraft GEM; Woodward RT; Kumar S; Sachs M; Eslava S; Petit C ChemSusChem; 2021 Apr; 14(7):1720-1727. PubMed ID: 33428301 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly. Wu LZ; Chen B; Li ZJ; Tung CH Acc Chem Res; 2014 Jul; 47(7):2177-85. PubMed ID: 24873498 [TBL] [Abstract][Full Text] [Related]
12. Boosting the Photocatalytic Hydrogen Evolution Activity for D-π-A Conjugated Microporous Polymers by Statistical Copolymerization. Shu C; Han C; Yang X; Zhang C; Chen Y; Ren S; Wang F; Huang F; Jiang JX Adv Mater; 2021 Jul; 33(26):e2008498. PubMed ID: 34028900 [TBL] [Abstract][Full Text] [Related]
13. Hydrophobic and Hydrophilic Conjugated Polymer Dots as Binary Photocatalysts for Enhanced Visible-Light-Driven Hydrogen Evolution through Förster Resonance Energy Transfer. Elsayed MH; Abdellah M; Hung YH; Jayakumar J; Ting LY; Elewa AM; Chang CL; Lin WC; Wang KL; Abdel-Hafiez M; Hung HW; Horie M; Chou HH ACS Appl Mater Interfaces; 2021 Dec; 13(47):56554-56565. PubMed ID: 34783531 [TBL] [Abstract][Full Text] [Related]
14. Regulating Charge-Transfer in Conjugated Microporous Polymers for Photocatalytic Hydrogen Evolution. Mothika VS; Sutar P; Verma P; Das S; Pati SK; Maji TK Chemistry; 2019 Mar; 25(15):3867-3874. PubMed ID: 30620115 [TBL] [Abstract][Full Text] [Related]
15. Fluorescent Sulphur- and Nitrogen-Containing Porous Polymers with Tuneable Donor-Acceptor Domains for Light-Driven Hydrogen Evolution. Schwarz D; Acharja A; Ichangi A; Lyu P; Opanasenko MV; Goßler FR; König TAF; Čejka J; Nachtigall P; Thomas A; Bojdys MJ Chemistry; 2018 Aug; 24(46):11916-11921. PubMed ID: 30024068 [TBL] [Abstract][Full Text] [Related]
16. Faceted titania nanocrystals doped with indium oxide nanoclusters as a superior candidate for sacrificial hydrogen evolution without any noble-metal cocatalyst under solar irradiation. Amoli V; Sibi MG; Banerjee B; Anand M; Maurya A; Farooqui SA; Bhaumik A; Sinha AK ACS Appl Mater Interfaces; 2015 Jan; 7(1):810-22. PubMed ID: 25490530 [TBL] [Abstract][Full Text] [Related]
17. Development of Mixed-Anion Photocatalysts with Wide Visible-Light Absorption Bands for Solar Water Splitting. Cui J; Li C; Zhang F ChemSusChem; 2019 May; 12(9):1872-1888. PubMed ID: 30211984 [TBL] [Abstract][Full Text] [Related]
18. Realizing high hydrogen evolution activity under visible light using narrow band gap organic photocatalysts. Han C; Dong P; Tang H; Zheng P; Zhang C; Wang F; Huang F; Jiang JX Chem Sci; 2020 Dec; 12(5):1796-1802. PubMed ID: 34163942 [TBL] [Abstract][Full Text] [Related]
19. New organic donor-acceptor-π-acceptor sensitizers for efficient dye-sensitized solar cells and photocatalytic hydrogen evolution under visible-light irradiation. Li X; Cui S; Wang D; Zhou Y; Zhou H; Hu Y; Liu JG; Long Y; Wu W; Hua J; Tian H ChemSusChem; 2014 Oct; 7(10):2879-88. PubMed ID: 25154958 [TBL] [Abstract][Full Text] [Related]