BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 2564429)

  • 1. A muscle acetylcholine receptor is expressed in the human cerebellar medulloblastoma cell line TE671.
    Luther MA; Schoepfer R; Whiting P; Casey B; Blatt Y; Montal MS; Montal M; Linstrom J
    J Neurosci; 1989 Mar; 9(3):1082-96. PubMed ID: 2564429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human medulloblastoma cell line TE671 expresses a muscle-like acetylcholine receptor. Cloning of the alpha-subunit cDNA.
    Schoepfer R; Luther M; Lindstrom J
    FEBS Lett; 1988 Jan; 226(2):235-40. PubMed ID: 3338555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel subpopulation of neuronal acetylcholine receptors among those binding alpha-bungarotoxin.
    Pugh PC; Corriveau RA; Conroy WG; Berg DK
    Mol Pharmacol; 1995 Apr; 47(4):717-25. PubMed ID: 7723732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunological and pharmacological heterogeneity of alpha-bungarotoxin binding sites extracted from TE671 cells.
    Walker R; Vincent A; Newsom-Davis J
    J Neuroimmunol; 1988 Aug; 19(1-2):149-57. PubMed ID: 3397405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal-like features of TE671 cells: presence of a functional nicotinic cholinergic receptor.
    Syapin PJ; Salvaterra PM; Engelhardt JK
    Brain Res; 1982 Jan; 231(2):365-77. PubMed ID: 7055685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain alpha-bungarotoxin binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily.
    Schoepfer R; Conroy WG; Whiting P; Gore M; Lindstrom J
    Neuron; 1990 Jul; 5(1):35-48. PubMed ID: 2369519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibodies in sera from patients with myasthenia gravis do not bind to nicotinic acetylcholine receptors from human brain.
    Whiting PJ; Cooper J; Lindstrom JM
    J Neuroimmunol; 1987 Oct; 16(2):205-13. PubMed ID: 3624454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nicotinic agonists regulate alpha-bungarotoxin binding sites of TE671 human medulloblastoma cells.
    Siegel HN; Lukas RJ
    J Neurochem; 1988 Apr; 50(4):1272-8. PubMed ID: 3346679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of bovine and human neuronal nicotinic acetylcholine receptors using monoclonal antibodies.
    Whiting PJ; Lindstrom JM
    J Neurosci; 1988 Sep; 8(9):3395-404. PubMed ID: 3171681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-acetylcholine receptor (AChR) antibodies measurement in myasthenia gravis: the use of cell line TE671 as a source of AChR antigen.
    Somnier FE
    J Neuroimmunol; 1994 Apr; 51(1):63-8. PubMed ID: 8157737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epitope mapping of monoclonal antibodies to Torpedo acetylcholine receptor gamma subunits, which specifically recognize the epsilon subunit of mammalian muscle acetylcholine receptor.
    Nelson S; Shelton GD; Lei S; Lindstrom JM; Conti-Tronconi BM
    J Neuroimmunol; 1992 Jan; 36(1):13-27. PubMed ID: 1370956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and channel properties of alpha-bungarotoxin-sensitive acetylcholine receptors on chick ciliary and choroid neurons.
    McNerney ME; Pardi D; Pugh PC; Nai Q; Margiotta JF
    J Neurophysiol; 2000 Sep; 84(3):1314-29. PubMed ID: 10980005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of embryonic and adult muscle acetylcholine receptors transiently expressed in COS cells.
    Gu Y; Franco A; Gardner PD; Lansman JB; Forsayeth JR; Hall ZW
    Neuron; 1990 Aug; 5(2):147-57. PubMed ID: 2383398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forskolin stabilizes epsilon subunit-containing acetylcholine receptors.
    Jayawickreme SP; Claudio T
    Brain Res Mol Brain Res; 1994 Oct; 26(1-2):293-98. PubMed ID: 7854059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary structure and functional expression of the alpha-, beta-, gamma-, delta- and epsilon-subunits of the acetylcholine receptor from rat muscle.
    Witzemann V; Stein E; Barg B; Konno T; Koenen M; Kues W; Criado M; Hofmann M; Sakmann B
    Eur J Biochem; 1990 Dec; 194(2):437-48. PubMed ID: 1702709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the amino acid residue at alpha1:189 in the binding of neuromuscular blocking agents to mouse and human muscle nicotinic acetylcholine receptors.
    Purohit PG; Tate RJ; Pow E; Hill D; Connolly JG
    Br J Pharmacol; 2007 Apr; 150(7):920-31. PubMed ID: 17293883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological and biochemical differentiation of the human medulloblastoma cell line TE671.
    Siegel HN; Lukas RJ
    Brain Res Dev Brain Res; 1988 Dec; 44(2):269-80. PubMed ID: 2852072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Appearance of new acetylcholine receptors on the baby chick biventer cervicis and denervated rat diaphragm muscles after blockade with alpha-bungarotoxin.
    Chiung Chang C; Jai Su M; Hsien Tung L
    J Physiol; 1977 Jun; 268(2):449-65. PubMed ID: 874917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoclonal antibodies raised against human acetylcholine receptor bind to all five subunits of the fetal isoform.
    Jacobson L; Beeson D; Tzartos S; Vincent A
    J Neuroimmunol; 1999 Aug; 98(2):112-20. PubMed ID: 10430044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of regions involved in the binding of alpha-bungarotoxin to the human alpha7 neuronal nicotinic acetylcholine receptor using synthetic peptides.
    Marinou M; Tzartos SJ
    Biochem J; 2003 Jun; 372(Pt 2):543-54. PubMed ID: 12614199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.