BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 25644402)

  • 1. Polymer brushes interfacing blood as a route toward high performance blood contacting devices.
    Surman F; Riedel T; Bruns M; Kostina NY; Sedláková Z; Rodriguez-Emmenegger C
    Macromol Biosci; 2015 May; 15(5):636-46. PubMed ID: 25644402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties.
    Jin X; Yuan J; Shen J
    Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity.
    Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN
    Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(N-vinylpyrrolidone)-modified poly(dimethylsiloxane) elastomers as anti-biofouling materials.
    Wu Z; Tong W; Jiang W; Liu X; Wang Y; Chen H
    Colloids Surf B Biointerfaces; 2012 Aug; 96():37-43. PubMed ID: 22510455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity.
    Wei Y; Zhang J; Feng X; Liu D
    J Biomater Sci Polym Ed; 2017 Dec; 28(18):2101-2116. PubMed ID: 28891389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfaces resistant to fouling from biological fluids: towards bioactive surfaces for real applications.
    Rodriguez-Emmenegger C; Houska M; Alles AB; Brynda E
    Macromol Biosci; 2012 Oct; 12(10):1413-22. PubMed ID: 22930486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient non-biofouling coating of zwitterionic polymers: poly((3-(methacryloylamino)propyl)-dimethyl(3-sulfopropyl)ammonium hydroxide).
    Cho WK; Kong B; Choi IS
    Langmuir; 2007 May; 23(10):5678-82. PubMed ID: 17432887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable polymer brush as nanocoupled interface for improving the durability of polymer coating on metal surface.
    Bedair TM; Cho Y; Joung YK; Han DK
    Colloids Surf B Biointerfaces; 2014 Oct; 122():808-817. PubMed ID: 25200098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility.
    Wang M; Yuan J; Huang X; Cai X; Li L; Shen J
    Colloids Surf B Biointerfaces; 2013 Mar; 103():52-8. PubMed ID: 23201719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell fouling resistance of polymer brushes grafted from ti substrates by surface-initiated polymerization: effect of ethylene glycol side chain length.
    Fan X; Lin L; Messersmith PB
    Biomacromolecules; 2006 Aug; 7(8):2443-8. PubMed ID: 16903694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility.
    Liu P; Chen Q; Yuan B; Chen M; Wu S; Lin S; Shen J
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3865-74. PubMed ID: 23910289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer brushes on planar TiO2 substrates.
    Yang J; Hou L; Xu B; Zhang N; Liang Y; Tian W; Dong D
    Macromol Rapid Commun; 2014 Jul; 35(13):1224-9. PubMed ID: 24719388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification.
    Yuan W; Feng Y; Wang H; Yang D; An B; Zhang W; Khan M; Guo J
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3644-51. PubMed ID: 23910260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces.
    Zhao C; Li L; Wang Q; Yu Q; Zheng J
    Langmuir; 2011 Apr; 27(8):4906-13. PubMed ID: 21405141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phototriggered functionalization of hierarchically structured polymer brushes.
    de los Santos Pereira A; Kostina NY; Bruns M; Rodriguez-Emmenegger C; Barner-Kowollik C
    Langmuir; 2015 Jun; 31(21):5899-907. PubMed ID: 25961109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-fouling hydrogels of 2-hydroxyethyl methacrylate and zwitterionic carboxybetaine (meth)acrylamides.
    Kostina NY; Rodriguez-Emmenegger C; Houska M; Brynda E; Michálek J
    Biomacromolecules; 2012 Dec; 13(12):4164-70. PubMed ID: 23157270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A facile strategy for the modification of polyethylene substrates with non-fouling, bioactive poly(poly(ethylene glycol) methacrylate) brushes.
    Lavanant L; Pullin B; Hubbell JA; Klok HA
    Macromol Biosci; 2010 Jan; 10(1):101-8. PubMed ID: 19890949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings.
    Zhang Z; Chen S; Chang Y; Jiang S
    J Phys Chem B; 2006 Jun; 110(22):10799-804. PubMed ID: 16771329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface initiated polymerization on pulsed plasma deposited polyallylamine: a polymer substrate-independent strategy to soft surfaces with polymer brushes.
    Yameen B; Khan HU; Knoll W; Förch R; Jonas U
    Macromol Rapid Commun; 2011 Nov; 32(21):1735-40. PubMed ID: 21858892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood compatibility of surfaces with superlow protein adsorption.
    Zhang Z; Zhang M; Chen S; Horbett TA; Ratner BD; Jiang S
    Biomaterials; 2008 Nov; 29(32):4285-91. PubMed ID: 18722010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.