These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
570 related articles for article (PubMed ID: 25644448)
21. Cryopreserved dentin matrix as a scaffold material for dentin-pulp tissue regeneration. Jiao L; Xie L; Yang B; Yu M; Jiang Z; Feng L; Guo W; Tian W Biomaterials; 2014 Jun; 35(18):4929-39. PubMed ID: 24680189 [TBL] [Abstract][Full Text] [Related]
22. Preliminary study on dental pulp stem cell-mediated pulp regeneration in canine immature permanent teeth. Wang Y; Zhao Y; Jia W; Yang J; Ge L J Endod; 2013 Feb; 39(2):195-201. PubMed ID: 23321230 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of the Apical Complex and the Coronal Pulp as a Stem Cell Source for Dentin-pulp Regeneration. Park MK; Kim S; Jeon M; Jung UW; Lee JH; Choi HJ; Choi JE; Song JS J Endod; 2020 Feb; 46(2):224-231.e3. PubMed ID: 31836138 [TBL] [Abstract][Full Text] [Related]
24. Human treated dentin matrices combined with Zn-doped, Mg-based bioceramic scaffolds and human dental pulp stem cells towards targeted dentin regeneration. Bakopoulou A; Papachristou E; Bousnaki M; Hadjichristou C; Kontonasaki E; Theocharidou A; Papadopoulou L; Kantiranis N; Zachariadis G; Leyhausen G; Geurtsen W; Koidis P Dent Mater; 2016 Aug; 32(8):e159-75. PubMed ID: 27298239 [TBL] [Abstract][Full Text] [Related]
25. Natural mineralized scaffolds promote the dentinogenic potential of dental pulp stem cells via the mitogen-activated protein kinase signaling pathway. Zhang H; Liu S; Zhou Y; Tan J; Che H; Ning F; Zhang X; Xun W; Huo N; Tang L; Deng Z; Jin Y Tissue Eng Part A; 2012 Apr; 18(7-8):677-91. PubMed ID: 21988658 [TBL] [Abstract][Full Text] [Related]
26. Promotion of dentin regeneration via CCN3 modulation on Notch and BMP signaling pathways. Wang X; He H; Wu X; Hu J; Tan Y Biomaterials; 2014 Mar; 35(9):2720-9. PubMed ID: 24406215 [TBL] [Abstract][Full Text] [Related]
27. The performance of human dental pulp stem cells on different three-dimensional scaffold materials. Zhang W; Walboomers XF; van Kuppevelt TH; Daamen WF; Bian Z; Jansen JA Biomaterials; 2006 Nov; 27(33):5658-68. PubMed ID: 16916542 [TBL] [Abstract][Full Text] [Related]
29. A Sandwich Structure of Human Dental Pulp Stem Cell Sheet, Treated Dentin Matrix, and Matrigel for Tooth Root Regeneration. Meng H; Hu L; Zhou Y; Ge Z; Wang H; Wu CT; Jin J Stem Cells Dev; 2020 Apr; 29(8):521-532. PubMed ID: 32089088 [TBL] [Abstract][Full Text] [Related]
30. Nanofibrous spongy microspheres enhance odontogenic differentiation of human dental pulp stem cells. Kuang R; Zhang Z; Jin X; Hu J; Gupte MJ; Ni L; Ma PX Adv Healthc Mater; 2015 Sep; 4(13):1993-2000. PubMed ID: 26138254 [TBL] [Abstract][Full Text] [Related]
31. Potential dental pulp revascularization and odonto-/osteogenic capacity of a novel transplant combined with dental pulp stem cells and platelet-rich fibrin. Chen YJ; Zhao YH; Zhao YJ; Liu NX; Lv X; Li Q; Chen FM; Zhang M Cell Tissue Res; 2015 Aug; 361(2):439-55. PubMed ID: 25797716 [TBL] [Abstract][Full Text] [Related]
32. Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering. Li Y; Liu Y; Xun X; Zhang W; Xu Y; Gu D ACS Appl Mater Interfaces; 2019 Oct; 11(40):36359-36370. PubMed ID: 31509372 [TBL] [Abstract][Full Text] [Related]
33. Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. Kuang R; Zhang Z; Jin X; Hu J; Shi S; Ni L; Ma PX Acta Biomater; 2016 Mar; 33():225-34. PubMed ID: 26826529 [TBL] [Abstract][Full Text] [Related]
34. A Bilayered Poly (Lactic-Co-Glycolic Acid) Scaffold Provides Differential Cues for the Differentiation of Dental Pulp Stem Cells. Gangolli RA; Devlin SM; Gerstenhaber JA; Lelkes PI; Yang M Tissue Eng Part A; 2019 Feb; 25(3-4):224-233. PubMed ID: 29984629 [TBL] [Abstract][Full Text] [Related]
35. Cell-derived micro-environment helps dental pulp stem cells promote dental pulp regeneration. Zhang X; Li H; Sun J; Luo X; Yang H; Xie L; Yang B; Guo W; Tian W Cell Prolif; 2017 Oct; 50(5):. PubMed ID: 28741725 [TBL] [Abstract][Full Text] [Related]
36. The odontogenic differentiation of human dental pulp stem cells on nanofibrous poly(L-lactic acid) scaffolds in vitro and in vivo. Wang J; Liu X; Jin X; Ma H; Hu J; Ni L; Ma PX Acta Biomater; 2010 Oct; 6(10):3856-63. PubMed ID: 20406702 [TBL] [Abstract][Full Text] [Related]
37. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration. Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268 [TBL] [Abstract][Full Text] [Related]
38. Nano-Structured Gelatin/Bioactive Glass Hybrid Scaffolds for the Enhancement of Odontogenic Differentiation of Human Dental Pulp Stem Cells. Qu T; Liu X J Mater Chem B; 2013 Oct; 1(37):4764-4772. PubMed ID: 24098854 [TBL] [Abstract][Full Text] [Related]
39. Pulp regeneration in a full-length human tooth root using a hierarchical nanofibrous microsphere system. Li X; Ma C; Xie X; Sun H; Liu X Acta Biomater; 2016 Apr; 35():57-67. PubMed ID: 26931056 [TBL] [Abstract][Full Text] [Related]
40. Effect of Curcumin-containing Nanofibrous Gelatin-hydroxyapatite Scaffold on Proliferation and Early Osteogenic Differentiation of Dental Pulp Stem Cells. Dizaj SM; Rezaei Y; Namaki F; Sharifi S; Abdolahinia ED Pharm Nanotechnol; 2024; 12(3):262-268. PubMed ID: 37592779 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]