These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 25644451)

  • 1. Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties.
    Kane RJ; Weiss-Bilka HE; Meagher MJ; Liu Y; Gargac JA; Niebur GL; Wagner DR; Roeder RK
    Acta Biomater; 2015 Apr; 17():16-25. PubMed ID: 25644451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of hydroxyapatite reinforcement on the architecture and mechanical properties of freeze-dried collagen scaffolds.
    Kane RJ; Roeder RK
    J Mech Behav Biomed Mater; 2012 Mar; 7():41-9. PubMed ID: 22340683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair.
    Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ
    J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acellular hydroxyapatite-collagen scaffolds support angiogenesis and osteogenic gene expression in an ectopic murine model: Effects of hydroxyapatite volume fraction.
    Meagher MJ; Weiss-Bilka HE; Best ME; Boerckel JD; Wagner DR; Roeder RK
    J Biomed Mater Res A; 2016 Sep; 104(9):2178-88. PubMed ID: 27112109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyapatite whisker-reinforced polyetherketoneketone bone ingrowth scaffolds.
    Converse GL; Conrad TL; Merrill CH; Roeder RK
    Acta Biomater; 2010 Mar; 6(3):856-63. PubMed ID: 19665061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of hydroxyapatite whisker reinforced polyetherketoneketone composite scaffolds.
    Converse GL; Conrad TL; Roeder RK
    J Mech Behav Biomed Mater; 2009 Dec; 2(6):627-35. PubMed ID: 19716108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the mold temperature on the mechanical properties and crystallinity of hydroxyapatite whisker-reinforced polyetheretherketone scaffolds.
    Conrad TL; Jaekel DJ; Kurtz SM; Roeder RK
    J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):576-83. PubMed ID: 23296754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mechanical evaluation of micro-HA/CS composite scaffolds with interconnected spherical macropores.
    Ruixin L; Dong L; Bin Z; Hao L; Xue L; Caihong S; Weihua S; Xiaoli Q; Yinghai Y; Weining A; Xizheng Z
    Biomed Eng Online; 2016 Feb; 15():12. PubMed ID: 26831146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaffold pore size modulates in vitro osteogenesis of human adipose-derived stem/stromal cells.
    Huri PY; Ozilgen BA; Hutton DL; Grayson WL
    Biomed Mater; 2014 Aug; 9(4):045003. PubMed ID: 24945873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds.
    Xie L; Yu H; Yang W; Zhu Z; Yue L
    J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix.
    Cholas R; Kunjalukkal Padmanabhan S; Gervaso F; Udayan G; Monaco G; Sannino A; Licciulli A
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():499-505. PubMed ID: 27040244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bilayer hydroxyapatite scaffolds for maxillofacial bone tissue engineering.
    Guda T; Oh S; Appleford MR; Ong JL
    Int J Oral Maxillofac Implants; 2012; 27(2):288-94. PubMed ID: 22442766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering.
    Zheng L; Jiang X; Chen X; Fan H; Zhang X
    Biomed Mater; 2014 Oct; 9(6):065004. PubMed ID: 25358331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K; Dasgupta S; Kundu B; Bissoyi A
    J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites.
    Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H
    Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of porogen morphology on the architecture, permeability, and mechanical properties of hydroxyapatite whisker reinforced polyetheretherketone scaffolds.
    Conrad TL; Roeder RK
    J Mech Behav Biomed Mater; 2020 Jun; 106():103730. PubMed ID: 32250948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies.
    Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM
    J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM
    J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.