BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25644521)

  • 1. A portable and antibody-free sandwich assay for determination of chloramphenicol in food based on a personal glucose meter.
    Chen S; Gan N; Zhang H; Hu F; Li T; Cui H; Cao Y; Jiang Q
    Anal Bioanal Chem; 2015 Mar; 407(9):2499-507. PubMed ID: 25644521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Portable and quantitative point-of-care monitoring of Escherichia coli O157:H7 using a personal glucose meter based on immunochromatographic assay.
    Huang H; Zhao G; Dou W
    Biosens Bioelectron; 2018 Jun; 107():266-271. PubMed ID: 29477883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A label-free and universal platform for antibiotics detection based on microchip electrophoresis using aptamer probes.
    Zhou L; Gan N; Zhou Y; Li T; Cao Y; Chen Y
    Talanta; 2017 May; 167():544-549. PubMed ID: 28340759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a new fluorescence immunochromatography strip for detection of chloramphenicol residues in chicken muscles.
    Bai Z; Luo Y; Xu W; Gao H; Han P; Liu T; Wang H; Chen A; Huang K
    J Sci Food Agric; 2013 Dec; 93(15):3743-7. PubMed ID: 23681760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aptamer-based portable biosensor for platelet-derived growth factor-BB (PDGF-BB) with personal glucose meter readout.
    Ma X; Chen Z; Zhou J; Weng W; Zheng O; Lin Z; Guo L; Qiu B; Chen G
    Biosens Bioelectron; 2014 May; 55():412-6. PubMed ID: 24434497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecularly imprinted matrix solid-phase dispersion for extraction of chloramphenicol in fish tissues coupled with high-performance liquid chromatography determination.
    Guo L; Guan M; Zhao C; Zhang H
    Anal Bioanal Chem; 2008 Dec; 392(7-8):1431-8. PubMed ID: 18949463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent aptasensor for chloramphenicol detection using DIL-encapsulated liposome as nanotracer.
    Miao YB; Ren HX; Gan N; Cao Y; Li T; Chen Y
    Biosens Bioelectron; 2016 Jul; 81():454-459. PubMed ID: 27015148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An amperometric chloramphenicol immunosensor based on cadmium sulfide nanoparticles modified-dendrimer bonded conducting polymer.
    Kim DM; Rahman MA; Do MH; Ban C; Shim YB
    Biosens Bioelectron; 2010 Mar; 25(7):1781-8. PubMed ID: 20116233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent competitive flow-through assay for chloramphenicol using molecularly imprinted polymers.
    Suárez-Rodríguez JL; Díaz-García ME
    Biosens Bioelectron; 2001 Dec; 16(9-12):955-61. PubMed ID: 11679275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A portable chemical sensor for histidine based on the strategy of click chemistry.
    Zhou J; Xu K; Zhou P; Zheng O; Lin Z; Guo L; Qiu B; Chen G
    Biosens Bioelectron; 2014 Jan; 51():386-90. PubMed ID: 24007674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Au(III)-promoted magnetic molecularly imprinted polymer nanospheres for electrochemical determination of streptomycin residues in food.
    Liu B; Tang D; Zhang B; Que X; Yang H; Chen G
    Biosens Bioelectron; 2013 Mar; 41():551-6. PubMed ID: 23058661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishment of magnetic beads-based enzyme immunoassay for detection of chloramphenicol in milk.
    Xu J; Yin W; Zhang Y; Yi J; Meng M; Wang Y; Xue H; Zhang T; Xi R
    Food Chem; 2012 Oct; 134(4):2526-31. PubMed ID: 23442720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparsion of an immunochromatographic strip with ELISA for simultaneous detection of thiamphenicol, florfenicol and chloramphenicol in food samples.
    Guo L; Song S; Liu L; Peng J; Kuang H; Xu C
    Biomed Chromatogr; 2015 Sep; 29(9):1432-9. PubMed ID: 25675893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic bead-liposome hybrids enable sensitive and portable detection of DNA methyltransferase activity using personal glucose meter.
    Zhang Y; Xue Q; Liu J; Wang H
    Biosens Bioelectron; 2017 Jan; 87():537-544. PubMed ID: 27611472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Portable detection of Staphylococcus aureus using personal glucose meter based on hybridization chain reaction strategy.
    Yang Y; Wu T; Xu LP; Zhang X
    Talanta; 2021 May; 226():122132. PubMed ID: 33676686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes@molecularly imprinted polymer.
    Yang G; Zhao F
    Biosens Bioelectron; 2015 Feb; 64():416-22. PubMed ID: 25280341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecularly imprinted photonic polymer as an optical sensor to detect chloramphenicol.
    Zhou C; Wang T; Liu J; Guo C; Peng Y; Bai J; Liu M; Dong J; Gao N; Ning B; Gao Z
    Analyst; 2012 Oct; 137(19):4469-74. PubMed ID: 22870501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive point-of-care monitoring of cardiac biomarker myoglobin using aptamer and ubiquitous personal glucose meter.
    Wang Q; Liu F; Yang X; Wang K; Wang H; Deng X
    Biosens Bioelectron; 2015 Feb; 64():161-4. PubMed ID: 25216451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical detection of λ-cyhalothrin by core-shell fluorescent molecularly imprinted polymers in Chinese spirits.
    Wang J; Gao L; Han D; Pan J; Qiu H; Li H; Wei X; Dai J; Yang J; Yao H; Yan Y
    J Agric Food Chem; 2015 Mar; 63(9):2392-9. PubMed ID: 25632984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro chloramphenicol detection in a Haemophilus influenza model using an aptamer-polymer based electrochemical biosensor.
    Yadav SK; Agrawal B; Chandra P; Goyal RN
    Biosens Bioelectron; 2014 May; 55():337-42. PubMed ID: 24412768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.