These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 25644628)

  • 61. Enhancing bioelectrochemical hydrogen production from industrial wastewater using Ni-foam cathodes in a microbial electrolysis cell pilot plant.
    Guerrero-Sodric O; Baeza JA; Guisasola A
    Water Res; 2024 Jun; 256():121616. PubMed ID: 38657305
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Efficiently "pumping out" value-added resources from wastewater by bioelectrochemical systems: A review from energy perspectives.
    Zou S; He Z
    Water Res; 2018 Mar; 131():62-73. PubMed ID: 29274548
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Advances in bioelectrochemical systems for bio-products recovery.
    Singh NK; Mathuriya AS; Mehrotra S; Pandit S; Singh A; Jadhav D
    Environ Technol; 2024 Aug; 45(19):3853-3876. PubMed ID: 37491760
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for
    Pham HT; Vu PH; Nguyen TTT; Bui HVT; Tran HTT; Tran HM; Nguyen HQ; Kim BH
    J Microbiol Biotechnol; 2019 Oct; 29(10):1607-1623. PubMed ID: 31474095
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Microbial electrolysis cells for waste biorefinery: A state of the art review.
    Lu L; Ren ZJ
    Bioresour Technol; 2016 Sep; 215():254-264. PubMed ID: 27020129
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Pyridine degradation in the microbial fuel cells.
    Zhang C; Li M; Liu G; Luo H; Zhang R
    J Hazard Mater; 2009 Dec; 172(1):465-71. PubMed ID: 19682792
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Simultaneous co-metabolic decolourisation of azo dye mixtures and bio-electricity generation under thermophillic (50 °C) and saline conditions by an adapted anaerobic mixed culture in microbial fuel cells.
    Fernando E; Keshavarz T; Kyazze G
    Bioresour Technol; 2013 Jan; 127():1-8. PubMed ID: 23131618
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions.
    Zhang J; Zhang Y; Quan X; Chen S; Afzal S
    Bioresour Technol; 2013 May; 136():273-80. PubMed ID: 23567691
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment.
    Venkata Mohan S; Mohanakrishna G; Chiranjeevi P
    Bioresour Technol; 2011 Jul; 102(14):7036-42. PubMed ID: 21570828
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Bioelectrochemical desalination and electricity generation in microbial desalination cell with dewatered sludge as fuel.
    Meng F; Jiang J; Zhao Q; Wang K; Zhang G; Fan Q; Wei L; Ding J; Zheng Z
    Bioresour Technol; 2014 Apr; 157():120-6. PubMed ID: 24534793
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate.
    Kim JR; Premier GC; Hawkes FR; Rodríguez J; Dinsdale RM; Guwy AJ
    Bioresour Technol; 2010 Feb; 101(4):1190-8. PubMed ID: 19796931
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enrichment of anodophilic nitrogen fixing bacteria in a bioelectrochemical system.
    Wong PY; Cheng KY; Kaksonen AH; Sutton DC; Ginige MP
    Water Res; 2014 Nov; 64():73-81. PubMed ID: 25043795
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A microbial fuel cell equipped with a biocathode for organic removal and denitrification.
    Lefebvre O; Al-Mamun A; Ng HY
    Water Sci Technol; 2008; 58(4):881-5. PubMed ID: 18776625
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Microbiome characterization of MFCs used for the treatment of swine manure.
    Vilajeliu-Pons A; Puig S; Pous N; Salcedo-Dávila I; Bañeras L; Balaguer MD; Colprim J
    J Hazard Mater; 2015 May; 288():60-8. PubMed ID: 25698567
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell.
    Moon H; Chang IS; Kim BH
    Bioresour Technol; 2006 Mar; 97(4):621-7. PubMed ID: 15939588
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations.
    Zhang F; Ahn Y; Logan BE
    Bioresour Technol; 2014; 152():46-52. PubMed ID: 24275025
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials.
    Zhou M; Yang J; Wang H; Jin T; Xu D; Gu T
    Environ Technol; 2013; 34(13-16):1915-28. PubMed ID: 24350445
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Microbial fuel cells for wastewater treatment.
    Aelterman P; Rabaey K; Clauwaert P; Verstraete W
    Water Sci Technol; 2006; 54(8):9-15. PubMed ID: 17163008
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Graphene-modified electrodes for enhancing the performance of microbial fuel cells.
    Yuan H; He Z
    Nanoscale; 2015 Apr; 7(16):7022-9. PubMed ID: 25465393
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fate of trace organics in a wastewater effluent dependent stream.
    Dong B; Kahl A; Cheng L; Vo H; Ruehl S; Zhang T; Snyder S; Sáez AE; Quanrud D; Arnold RG
    Sci Total Environ; 2015 Jun; 518-519():479-90. PubMed ID: 25777953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.