These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 25644691)

  • 1. Simultaneously disrupting AtPrx2, AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem.
    Shigeto J; Itoh Y; Hirao S; Ohira K; Fujita K; Tsutsumi Y
    J Integr Plant Biol; 2015 Apr; 57(4):349-56. PubMed ID: 25644691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Putative cationic cell-wall-bound peroxidase homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, are involved in lignification.
    Shigeto J; Kiyonaga Y; Fujita K; Kondo R; Tsutsumi Y
    J Agric Food Chem; 2013 Apr; 61(16):3781-8. PubMed ID: 23551275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The suppression of AtPrx52 affects fibers but not xylem lignification in Arabidopsis by altering the proportion of syringyl units.
    Fernández-Pérez F; Pomar F; Pedreño MA; Novo-Uzal E
    Physiol Plant; 2015 Jul; 154(3):395-406. PubMed ID: 25410139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic profile of Arabidopsis peroxidases, AtPrx-2, 25 and 71, contributing to stem lignification.
    Shigeto J; Nagano M; Fujita K; Tsutsumi Y
    PLoS One; 2014; 9(8):e105332. PubMed ID: 25137070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Arabidopsis Class III Peroxidase AtPRX71 Negatively Regulates Growth under Physiological Conditions and in Response to Cell Wall Damage.
    Raggi S; Ferrarini A; Delledonne M; Dunand C; Ranocha P; De Lorenzo G; Cervone F; Ferrari S
    Plant Physiol; 2015 Dec; 169(4):2513-25. PubMed ID: 26468518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peroxidase 4 is involved in syringyl lignin formation in Arabidopsis thaliana.
    Fernández-Pérez F; Vivar T; Pomar F; Pedreño MA; Novo-Uzal E
    J Plant Physiol; 2015 Mar; 175():86-94. PubMed ID: 25506770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of Arabidopsis peroxidase 72 alters cell wall and phenylpropanoid metabolism.
    Fernández-Pérez F; Pomar F; Pedreño MA; Novo-Uzal E
    Plant Sci; 2015 Oct; 239():192-9. PubMed ID: 26398803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant cell walls are enfeebled when attempting to preserve native lignin configuration with poly-p-hydroxycinnamaldehydes: evolutionary implications.
    Jourdes M; Cardenas CL; Laskar DD; Moinuddin SG; Davin LB; Lewis NG
    Phytochemistry; 2007 Jul; 68(14):1932-56. PubMed ID: 17559892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Arabidopsis Domain of Unknown Function 1218 (DUF1218) Containing Proteins, MODIFYING WALL LIGNIN-1 and 2 (At1g31720/MWL-1 and At4g19370/MWL-2) Function Redundantly to Alter Secondary Cell Wall Lignin Content.
    Mewalal R; Mizrachi E; Coetzee B; Mansfield SD; Myburg AA
    PLoS One; 2016; 11(3):e0150254. PubMed ID: 26930070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis.
    Herrero J; Fernández-Pérez F; Yebra T; Novo-Uzal E; Pomar F; Pedreño MÁ; Cuello J; Guéra A; Esteban-Carrasco A; Zapata JM
    Planta; 2013 Jun; 237(6):1599-612. PubMed ID: 23508663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S:G ratio of Arabidopsis lac17 mutant.
    Cesarino I; Araújo P; Sampaio Mayer JL; Vicentini R; Berthet S; Demedts B; Vanholme B; Boerjan W; Mazzafera P
    J Exp Bot; 2013 Apr; 64(6):1769-81. PubMed ID: 23418623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a role of AtCAD 1 in lignification of elongating stems of Arabidopsis thaliana.
    Eudes A; Pollet B; Sibout R; Do CT; Séguin A; Lapierre C; Jouanin L
    Planta; 2006 Dec; 225(1):23-39. PubMed ID: 16832689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems.
    Berthet S; Demont-Caulet N; Pollet B; Bidzinski P; Cézard L; Le Bris P; Borrega N; Hervé J; Blondet E; Balzergue S; Lapierre C; Jouanin L
    Plant Cell; 2011 Mar; 23(3):1124-37. PubMed ID: 21447792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MYB103 is required for FERULATE-5-HYDROXYLASE expression and syringyl lignin biosynthesis in Arabidopsis stems.
    Öhman D; Demedts B; Kumar M; Gerber L; Gorzsás A; Goeminne G; Hedenström M; Ellis B; Boerjan W; Sundberg B
    Plant J; 2013 Jan; 73(1):63-76. PubMed ID: 22967312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-order mutants reveal an essential requirement for peroxidases but not laccases in Casparian strip lignification.
    Rojas-Murcia N; Hématy K; Lee Y; Emonet A; Ursache R; Fujita S; De Bellis D; Geldner N
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):29166-29177. PubMed ID: 33139576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Zinnia to Arabidopsis: approaching the involvement of peroxidases in lignification.
    Novo-Uzal E; Fernández-Pérez F; Herrero J; Gutiérrez J; Gómez-Ros LV; Bernal MÁ; Díaz J; Cuello J; Pomar F; Pedreño MÁ
    J Exp Bot; 2013 Sep; 64(12):3499-518. PubMed ID: 23956408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing native lignin macromolecular configuration in Arabidopsis thaliana in specific cell wall types: further insights into limited substrate degeneracy and assembly of the lignins of ref8, fah 1-2 and C4H::F5H lines.
    Patten AM; Jourdes M; Cardenas CL; Laskar DD; Nakazawa Y; Chung BY; Franceschi VR; Davin LB; Lewis NG
    Mol Biosyst; 2010 Mar; 6(3):499-515. PubMed ID: 20174679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WRKY13 acts in stem development in Arabidopsis thaliana.
    Li W; Tian Z; Yu D
    Plant Sci; 2015 Jul; 236():205-13. PubMed ID: 26025534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The class III peroxidase PRX17 is a direct target of the MADS-box transcription factor AGAMOUS-LIKE15 (AGL15) and participates in lignified tissue formation.
    Cosio C; Ranocha P; Francoz E; Burlat V; Zheng Y; Perry SE; Ripoll JJ; Yanofsky M; Dunand C
    New Phytol; 2017 Jan; 213(1):250-263. PubMed ID: 27513887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth.
    Abdulrazzak N; Pollet B; Ehlting J; Larsen K; Asnaghi C; Ronseau S; Proux C; Erhardt M; Seltzer V; Renou JP; Ullmann P; Pauly M; Lapierre C; Werck-Reichhart D
    Plant Physiol; 2006 Jan; 140(1):30-48. PubMed ID: 16377748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.