These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25645183)

  • 1. Bounds for the critical speed of climate-driven moving-habitat models.
    Kot M; Phillips A
    Math Biosci; 2015 Apr; 262():65-72. PubMed ID: 25645183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistence in a Two-Dimensional Moving-Habitat Model.
    Phillips A; Kot M
    Bull Math Biol; 2015 Nov; 77(11):2125-59. PubMed ID: 26582361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate Change and Integrodifference Equations in a Stochastic Environment.
    Bouhours J; Lewis MA
    Bull Math Biol; 2016 Sep; 78(9):1866-1903. PubMed ID: 27647008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Individual behavior at habitat edges may help populations persist in moving habitats.
    MacDonald JS; Lutscher F
    J Math Biol; 2018 Dec; 77(6-7):2049-2077. PubMed ID: 29737397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approximating the Critical Domain Size of Integrodifference Equations.
    Reimer JR; Bonsall MB; Maini PK
    Bull Math Biol; 2016 Jan; 78(1):72-109. PubMed ID: 26721746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Range Shifts Under Constant-Speed and Accelerated Climate Warming.
    Zhou Y
    Bull Math Biol; 2021 Nov; 84(1):1. PubMed ID: 34787723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Keeping pace with climate change: stage-structured moving-habitat models.
    Harsch MA; Zhou Y; HilleRisLambers J; Kot M
    Am Nat; 2014 Jul; 184(1):25-37. PubMed ID: 24921598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistence and Spreading Speeds of Integro-Difference Equations with an Expanding or Contracting Habitat.
    Li B; Bewick S; Barnard MR; Fagan WF
    Bull Math Biol; 2016 Jul; 78(7):1337-79. PubMed ID: 27417986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Should I Stay or Should I Go: Partially Sedentary Populations Can Outperform Fully Dispersing Populations in Response to Climate-Induced Range Shifts.
    Cobbold CA; Stana R
    Bull Math Biol; 2020 Jan; 82(2):26. PubMed ID: 32006139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrodifference models for persistence in temporally varying river environments.
    Jacobsen J; Jin Y; Lewis MA
    J Math Biol; 2015 Feb; 70(3):549-90. PubMed ID: 24627231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrodifference equations in the presence of climate change: persistence criterion, travelling waves and inside dynamics.
    Lewis MA; Marculis NG; Shen Z
    J Math Biol; 2018 Dec; 77(6-7):1649-1687. PubMed ID: 29332297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saddle-point approximations, integrodifference equations, and invasions.
    Kot M; Neubert MG
    Bull Math Biol; 2008 Aug; 70(6):1790-826. PubMed ID: 18648885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving-habitat models: A numerical approach.
    MacDonald JS; Bourgault Y; Lutscher F
    Math Biosci; 2021 Nov; 341():108711. PubMed ID: 34547364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metapopulation models for extinction threshold in spatially correlated landscapes.
    Ovaskainen O; Sato K; Bascompte J; Hanski I
    J Theor Biol; 2002 Mar; 215(1):95-108. PubMed ID: 12051987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The integration of climate change, spatial dynamics, and habitat fragmentation: A conceptual overview.
    Holyoak M; Heath SK
    Integr Zool; 2016 Jan; 11(1):40-59. PubMed ID: 26458303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionarily stable and convergent stable strategies in reaction-diffusion models for conditional dispersal.
    Lam KY; Lou Y
    Bull Math Biol; 2014 Feb; 76(2):261-91. PubMed ID: 24430731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spreading speeds for plant populations in landscapes with low environmental variation.
    Gilbert MA; Gaffney EA; Bullock JM; White SM
    J Theor Biol; 2014 Dec; 363():436-52. PubMed ID: 25152218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants of extinction-colonization dynamics in Mediterranean butterflies: the role of landscape, climate and local habitat features.
    Fernández-Chacón A; Stefanescu C; Genovart M; Nichols JD; Hines JE; Páramo F; Turco M; Oro D
    J Anim Ecol; 2014 Jan; 83(1):276-85. PubMed ID: 23957287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density-dependent dispersal in integrodifference equations.
    Lutscher F
    J Math Biol; 2008 Apr; 56(4):499-524. PubMed ID: 17851661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A discrete-time model for population persistence in habitats with time-varying sizes.
    Zhou Y; Fagan WF
    J Math Biol; 2017 Sep; 75(3):649-704. PubMed ID: 28101632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.