These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 25645246)

  • 1. Inhalation toxicology methods: the generation and characterization of exposure atmospheres and inhalational exposures.
    Chen LC; Lippmann M
    Curr Protoc Toxicol; 2015 Feb; 63():24.4.1-24.4.23. PubMed ID: 25645246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.
    Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E
    Res Rep Health Eff Inst; 2004 Aug; (120):1-68; discussion 69-79. PubMed ID: 15543855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overview of inhalation exposure techniques: strengths and weaknesses.
    Pauluhn J
    Exp Toxicol Pathol; 2005 Jul; 57 Suppl 1():111-28. PubMed ID: 16092719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NTP Toxicity Study Report on the atmospheric characterization, particle size, chemical composition, and workplace exposure assessment of cellulose insulation (CELLULOSEINS).
    Morgan DL
    Toxic Rep Ser; 2006 Aug; (74):1-62, A1-C2. PubMed ID: 17160106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhalation exposure technology, dosimetry, and regulatory issues.
    Dorato MA; Wolff RK
    Toxicol Pathol; 1991; 19(4 Pt 1):373-83. PubMed ID: 1813983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overview of testing methods used in inhalation toxicity: from facts to artifacts.
    Pauluhn J
    Toxicol Lett; 2003 Apr; 140-141():183-93. PubMed ID: 12676465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhalation Exposure to Carbon Nanotubes (CNT) and Carbon Nanofibers (CNF): Methodology and Dosimetry.
    Oberdörster G; Castranova V; Asgharian B; Sayre P
    J Toxicol Environ Health B Crit Rev; 2015; 18(3-4):121-212. PubMed ID: 26361791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the Tobacco Heating System 2.2. Part 4: 90-day OECD 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects compared with cigarette smoke.
    Wong ET; Kogel U; Veljkovic E; Martin F; Xiang Y; Boue S; Vuillaume G; Leroy P; Guedj E; Rodrigo G; Ivanov NV; Hoeng J; Peitsch MC; Vanscheeuwijck P
    Regul Toxicol Pharmacol; 2016 Nov; 81 Suppl 2():S59-S81. PubMed ID: 27793746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of particle size differences between animal studies and human workplace aerosols for deriving exposure limit values.
    Oller AR; Oberdörster G
    Regul Toxicol Pharmacol; 2010; 57(2-3):181-94. PubMed ID: 20172011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a head-only aerosol exposure system for nonhuman primates.
    Dabisch PA; Kline J; Lewis C; Yeager J; Pitt ML
    Inhal Toxicol; 2010 Feb; 22(3):224-33. PubMed ID: 20063997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a mini-cascade impactor for sampling exposure chamber atmospheres.
    Martonen T; Clark M; Nelson D; Willard D; Rossignol E
    Fundam Appl Toxicol; 1982; 2(4):149-52. PubMed ID: 7185612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mosquito coil smoke inhalation toxicity. Part I: validation of test approach and acute inhalation toxicity.
    Pauluhn J
    J Appl Toxicol; 2006; 26(3):269-78. PubMed ID: 16547916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 90-day OECD TG 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects of the aerosol from the carbon heated tobacco product version 1.2 (CHTP1.2) compared with cigarette smoke. I. Inhalation exposure, clinical pathology and histopathology.
    Phillips BW; Schlage WK; Titz B; Kogel U; Sciuscio D; Martin F; Leroy P; Vuillaume G; Krishnan S; Lee T; Veljkovic E; Elamin A; Merg C; Ivanov NV; Peitsch MC; Hoeng J; Vanscheeuwijck P
    Food Chem Toxicol; 2018 Jun; 116(Pt B):388-413. PubMed ID: 29654848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhalation toxicology.
    Hayes A; Bakand S
    EXS; 2010; 100():461-88. PubMed ID: 20358692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop.
    Warheit DB; Borm PJ; Hennes C; Lademann J
    Inhal Toxicol; 2007 Jun; 19(8):631-43. PubMed ID: 17510836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A combined experimental and numerical study on upper airway dosimetry of inhaled nanoparticles from an electrical discharge machine shop.
    Tian L; Shang Y; Chen R; Bai R; Chen C; Inthavong K; Tu J
    Part Fibre Toxicol; 2017 Jul; 14(1):24. PubMed ID: 28701167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhalation toxicology models of endotoxin- and bioaerosol-induced inflammation.
    Thorne PS
    Toxicology; 2000 Nov; 152(1-3):13-23. PubMed ID: 11090935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sampling port for real-time analysis of bioaerosol in whole body exposure system for animal aerosol model development.
    Saini D; Hopkins GW; Chen CJ; Seay SA; Click EM; Lee S; Hartings JM; Frothingham R
    J Pharmacol Toxicol Methods; 2011; 63(2):143-9. PubMed ID: 20849964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhalation exposure methodology.
    Phalen RF; Mannix RC; Drew RT
    Environ Health Perspect; 1984 Jun; 56():23-34. PubMed ID: 6383799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticles: a review of particle toxicology following inhalation exposure.
    Bakand S; Hayes A; Dechsakulthorn F
    Inhal Toxicol; 2012; 24(2):125-35. PubMed ID: 22260506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.