These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25645934)

  • 1. Evidence of micro-continent entrainment during crustal accretion.
    Pilia S; Rawlinson N; Cayley RA; Bodin T; Musgrave R; Reading AM; Direen NG; Young MK
    Sci Rep; 2015 Feb; 5():8218. PubMed ID: 25645934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of continental accretion.
    Moresi L; Betts PG; Miller MS; Cayley RA
    Nature; 2014 Apr; 508(7495):245-8. PubMed ID: 24670638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seismological constraints on the crustal structures generated by continental rejuvenation in northeastern China.
    Zheng TY; He YM; Yang JH; Zhao L
    Sci Rep; 2015 Oct; 5():14995. PubMed ID: 26443323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constraints on crustal compositional architecture across the North China-Altaids transition and implications for craton margin reworking.
    Ye Z; Tan X; Gao R; Li Q; Zhang H; Wu X; Li W; Li Y
    Natl Sci Rev; 2024 May; 11(5):nwae171. PubMed ID: 38855726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct structural evidence of Indian continental subduction beneath Myanmar.
    Zheng T; He Y; Ding L; Jiang M; Ai Y; Mon CT; Hou G; Sein K; Thant M
    Nat Commun; 2020 Apr; 11(1):1944. PubMed ID: 32327668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring transient changes within overpressured regions of subduction zones using ambient seismic noise.
    Chaves EJ; Schwartz SY
    Sci Adv; 2016 Jan; 2(1):e1501289. PubMed ID: 26824075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The crustal juvenile and reworking in eastern Tibet due to tectonism and magmatism.
    Zheng T; He Y
    Sci Rep; 2024 Oct; 14(1):24358. PubMed ID: 39420204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crustal Structure of Yunnan Province, People's Republic of China, from Seismic Refraction Profiles.
    Kan RJ; Hu HX; Zeng RS; Mooney WD; McEvilly TV
    Science; 1986 Oct; 234(4775):433-7. PubMed ID: 17792016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-generation seismic model of the Australian crust from synchronous and asynchronous ambient noise imaging.
    Chen Y; Saygin E; Kennett B; Qashqai MT; Hauser J; Lumley D; Sandiford M
    Nat Commun; 2023 Mar; 14(1):1192. PubMed ID: 36864052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compression-extension transition of continental crust in a subduction zone: A parametric numerical modeling study with implications on Mesozoic-Cenozoic tectonic evolution of the Cathaysia Block.
    Zuo X; Chan LS; Gao JF
    PLoS One; 2017; 12(2):e0171536. PubMed ID: 28182640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seismic mapping of the central and southern segments of the Tanlu fault zone using P-wave receiver functions.
    Liu Q; Lü Z; Lei J
    Sci Rep; 2024 Sep; 14(1):22388. PubMed ID: 39333187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The non-cylindrical crustal architecture of the Pyrenees.
    Chevrot S; Sylvander M; Diaz J; Martin R; Mouthereau F; Manatschal G; Masini E; Calassou S; Grimaud F; Pauchet H; Ruiz M
    Sci Rep; 2018 Jun; 8(1):9591. PubMed ID: 29941925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subduction and collision processes in the Central Andes constrained by converted seismic phases.
    Yuan X; Sobolev SV; Kind R; Oncken O; Bock G; Asch G; Schurr B; Graeber F; Rudloff A; Hanka W; Wylegalla K; Tibi R; Haberland C; Rietbrock A; Giese P; Wigger P; Röwer P; Zandt G; Beck S; Wallace T; Pardo M; Comte D
    Nature; 2000 Dec 21-28; 408(6815):958-61. PubMed ID: 11140679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arc accretion and crustal reworking from late Archean to Neoproterozoic in Northeast Brazil.
    Ferreira ACD; Dantas EL; Fuck RA; Nedel IM
    Sci Rep; 2020 May; 10(1):7855. PubMed ID: 32398674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3-D shallow shear velocity structure of the Jakarta Basin from transdimensional ambient noise tomography.
    Ry RV; Cummins PR; Hejrani B; Widiyantoro S
    Geophys J Int; 2023 Sep; 234(3):1916-1932. PubMed ID: 37193016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of fluids in lower-crustal earthquakes near continental rifts.
    Reyners M; Eberhart-Phillips D; Stuart G
    Nature; 2007 Apr; 446(7139):1075-8. PubMed ID: 17460671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wedge tectonics in South China: constraints from new seismic data.
    Li T; Jiang M; Zhao L; Yao W; Chen L; Chu Y; Sun B; Ai Y; Wan B; Gessner K; Yuan H
    Sci Bull (Beijing); 2022 Jul; 67(14):1496-1507. PubMed ID: 36546193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraplate thrust orogeny of the Altai Mountains revealed by deep seismic reflection.
    Zhang L; Zhao L; Zhao L; Xie X; Tian X; Xiao W; Yao Z
    Sci Bull (Beijing); 2024 Jun; 69(11):1757-1766. PubMed ID: 38522999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application.
    Hu F; Ducea MN; Liu S; Chapman JB
    Sci Rep; 2017 Aug; 7(1):7058. PubMed ID: 28765580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of secular variation in Archean crust formation in the Eastern Indian Shield.
    Mandal P
    Sci Rep; 2022 Aug; 12(1):14040. PubMed ID: 35982082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.