These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 25646153)

  • 1. The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp. in chickpea.
    Gopalakrishnan S; Srinivas V; Alekhya G; Prakash B; Kudapa H; Rathore A; Varshney RK
    Springerplus; 2015; 4():31. PubMed ID: 25646153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of plant growth-promoting Streptomyces sp. on growth promotion and grain yield in chickpea (Cicer arietinum L).
    Gopalakrishnan S; Srinivas V; Alekhya G; Prakash B
    3 Biotech; 2015 Oct; 5(5):799-806. PubMed ID: 28324533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant growth promoting potential of the fungus Discosia sp. FIHB 571 from tea rhizosphere tested on chickpea, maize and pea.
    Rahi P; Vyas P; Sharma S; Gulati A; Gulati A
    Indian J Microbiol; 2009 Jun; 49(2):128-33. PubMed ID: 23100761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Appraisal of biofilm forming bacteria in developing buffalo dung-based bioformulation coupled to promote yield of
    Dhiman S; Baliyan N; Maheshwari DK
    3 Biotech; 2022 Sep; 12(9):234. PubMed ID: 35996675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation.
    Shrivastava P; Kumar R
    Saudi J Biol Sci; 2015 Mar; 22(2):123-31. PubMed ID: 25737642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation, screening and characterization of efficient cellulose-degrading fungal and bacterial strains and preparation of their consortium under in vitro studies.
    Roy D; Gunri SK; Pal KK
    3 Biotech; 2024 May; 14(5):131. PubMed ID: 38645793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proximity-based defensive mutualism between Streptomyces and Mesorhizobium by sharing and sequestering iron.
    Du X; Liu N; Yan B; Li Y; Liu M; Huang Y
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38366066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the molecular basis of resistance to
    Thakur R; Sharma S; Devi R; Sirari A; Tiwari RK; Lal MK; Kumar R
    PeerJ; 2023; 11():e15560. PubMed ID: 37361041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological, ultrastructural and molecular variations in susceptible and resistant genotypes of chickpea infected with Botrytis grey mould.
    Thakur R; Devi R; Lal MK; Tiwari RK; Sharma S; Kumar R
    PeerJ; 2023; 11():e15134. PubMed ID: 37009149
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Gopalakrishnan S; Srinivas V; Chand U; Pratyusha S; Samineni S
    3 Biotech; 2022 Nov; 12(11):318. PubMed ID: 36276473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volatile Organic Compounds of
    He Y; Guo W; Peng J; Guo J; Ma J; Wang X; Zhang C; Jia N; Wang E; Hu D; Wang Z
    Front Microbiol; 2022; 13():891245. PubMed ID: 35668752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of root-endophytic actinobacteria from cactus (Opuntia ficus-indica) for plant growth promoting traits.
    Govindasamy V; George P; Ramesh SV; Sureshkumar P; Rane J; Minhas PS
    Arch Microbiol; 2022 Jan; 204(2):150. PubMed ID: 35067746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering the antagonistic effect of Streptomyces spp. and host-plant resistance induction against charcoal rot of sorghum.
    Gopalakrishnan S; Srinivas V; Naresh N; Pratyusha S; Ankati S; Madhuprakash J; Govindaraj M; Sharma R
    Planta; 2021 Feb; 253(2):57. PubMed ID: 33532924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Streptomyces sp. CLV45 from Fabaceae rhizosphere benefits growth of soybean plants.
    Horstmann JL; Dias MP; Ortolan F; Medina-Silva R; Astarita LV; Santarém ER
    Braz J Microbiol; 2020 Dec; 51(4):1861-1871. PubMed ID: 32529561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of Bioremediation and PGP Traits in
    Romano-Armada N; Yañez-Yazlle MF; Irazusta VP; Rajal VB; Moraga NB
    Pathogens; 2020 Feb; 9(2):. PubMed ID: 32069867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Streptomyces: implications and interactions in plant growth promotion.
    Olanrewaju OS; Babalola OO
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1179-1188. PubMed ID: 30594952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Streptomyces sp. strain SK68, isolated from peanut rhizosphere, promotes growth and alleviates salt stress in tomato (Solanum lycopersicum cv. Micro-Tom).
    Damodharan K; Palaniyandi SA; Le B; Suh JW; Yang SH
    J Microbiol; 2018 Oct; 56(10):753-759. PubMed ID: 30267318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes.
    Sathya A; Vijayabharathi R; Gopalakrishnan S
    3 Biotech; 2017 Jun; 7(2):102. PubMed ID: 28560641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Streptomyces pactum assisted phytoremediation in Zn/Pb smelter contaminated soil of Feng County and its impact on enzymatic activities.
    Ali A; Guo D; Mahar A; Ma F; Li R; Shen F; Wang P; Zhang Z
    Sci Rep; 2017 Apr; 7():46087. PubMed ID: 28387235
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.