BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25646411)

  • 1. An intermolecular electrostatic interaction controls the prepore-to-pore transition in a cholesterol-dependent cytolysin.
    Wade KR; Hotze EM; Kuiper MJ; Morton CJ; Parker MW; Tweten RK
    Proc Natl Acad Sci U S A; 2015 Feb; 112(7):2204-9. PubMed ID: 25646411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monomer-monomer interactions drive the prepore to pore conversion of a beta-barrel-forming cholesterol-dependent cytolysin.
    Hotze EM; Heuck AP; Czajkowsky DM; Shao Z; Johnson AE; Tweten RK
    J Biol Chem; 2002 Mar; 277(13):11597-605. PubMed ID: 11799121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Intermolecular π-Stacking Interaction Drives Conformational Changes Necessary to β-Barrel Formation in a Pore-Forming Toxin.
    Burns JR; Morton CJ; Parker MW; Tweten RK
    mBio; 2019 Jul; 10(4):. PubMed ID: 31266869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prepore to pore transition of a cholesterol-dependent cytolysin visualized by electron microscopy.
    Dang TX; Hotze EM; Rouiller I; Tweten RK; Wilson-Kubalek EM
    J Struct Biol; 2005 Apr; 150(1):100-8. PubMed ID: 15797734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly and topography of the prepore complex in cholesterol-dependent cytolysins.
    Heuck AP; Tweten RK; Johnson AE
    J Biol Chem; 2003 Aug; 278(33):31218-25. PubMed ID: 12777381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CryoEM structures of membrane pore and prepore complex reveal cytolytic mechanism of Pneumolysin.
    van Pee K; Neuhaus A; D'Imprima E; Mills DJ; Kühlbrandt W; Yildiz Ö
    Elife; 2017 Mar; 6():. PubMed ID: 28323617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Key Motif in the Cholesterol-Dependent Cytolysins Reveals a Large Family of Related Proteins.
    Evans JC; Johnstone BA; Lawrence SL; Morton CJ; Christie MP; Parker MW; Tweten RK
    mBio; 2020 Sep; 11(5):. PubMed ID: 32994330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The domains of a cholesterol-dependent cytolysin undergo a major FRET-detected rearrangement during pore formation.
    Ramachandran R; Tweten RK; Johnson AE
    Proc Natl Acad Sci U S A; 2005 May; 102(20):7139-44. PubMed ID: 15878993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Structural Basis for a Transition State That Regulates Pore Formation in a Bacterial Toxin.
    Wade KR; Lawrence SL; Farrand AJ; Hotze EM; Kuiper MJ; Gorman MA; Christie MP; Panjikar S; Morton CJ; Parker MW; Tweten RK
    mBio; 2019 Apr; 10(2):. PubMed ID: 31015325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Cholesterol-dependent Cytolysin Membrane-binding Interface Discriminates Lipid Environments of Cholesterol to Support β-Barrel Pore Insertion.
    Farrand AJ; Hotze EM; Sato TK; Wade KR; Wimley WC; Johnson AE; Tweten RK
    J Biol Chem; 2015 Jul; 290(29):17733-17744. PubMed ID: 26032415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Molecular mechanism of membrane pore formation with cholesterol binding cytolysin: streptolysin O and perfringolysin O].
    Shimizu T; Hayashi H
    Tanpakushitsu Kakusan Koso; 2001 Mar; 46(4 Suppl):532-9. PubMed ID: 11268657
    [No Abstract]   [Full Text] [Related]  

  • 12. Glu289 residue in the pore-forming motif of Vibrio cholerae cytolysin is important for efficient β-barrel pore formation.
    Mondal AK; Sengupta N; Singh M; Biswas R; Lata K; Lahiri I; Dutta S; Chattopadhyay K
    J Biol Chem; 2022 Oct; 298(10):102441. PubMed ID: 36055404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane perforation by the pore-forming toxin pneumolysin.
    Vögele M; Bhaskara RM; Mulvihill E; van Pee K; Yildiz Ö; Kühlbrandt W; Müller DJ; Hummer G
    Proc Natl Acad Sci U S A; 2019 Jul; 116(27):13352-13357. PubMed ID: 31209022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arresting pore formation of a cholesterol-dependent cytolysin by disulfide trapping synchronizes the insertion of the transmembrane beta-sheet from a prepore intermediate.
    Hotze EM; Wilson-Kubalek EM; Rossjohn J; Parker MW; Johnson AE; Tweten RK
    J Biol Chem; 2001 Mar; 276(11):8261-8. PubMed ID: 11102453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins.
    Shepard LA; Shatursky O; Johnson AE; Tweten RK
    Biochemistry; 2000 Aug; 39(33):10284-93. PubMed ID: 10956018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular mechanism of pneumolysin, a virulence factor from Streptococcus pneumoniae.
    Rossjohn J; Gilbert RJ; Crane D; Morgan PJ; Mitchell TJ; Rowe AJ; Andrew PW; Paton JC; Tweten RK; Parker MW
    J Mol Biol; 1998 Nov; 284(2):449-61. PubMed ID: 9813129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of pore formation by the bacterial toxin pneumolysin.
    Tilley SJ; Orlova EV; Gilbert RJ; Andrew PW; Saibil HR
    Cell; 2005 Apr; 121(2):247-56. PubMed ID: 15851031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing the Domino-Like Prepore-to-Pore Transition of Streptolysin O by High-Speed AFM.
    Ariyama H
    J Membr Biol; 2023 Feb; 256(1):91-103. PubMed ID: 35980453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cholesterol-dependent cytolysins.
    Tweten RK; Parker MW; Johnson AE
    Curr Top Microbiol Immunol; 2001; 257():15-33. PubMed ID: 11417120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How cholesterol-dependent cytolysins bite holes into membranes.
    Walz T
    Mol Cell; 2005 May; 18(4):393-4. PubMed ID: 15893721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.