These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 25646417)
1. Dynamic phototuning of 3D hydrogel stiffness. Stowers RS; Allen SC; Suggs LJ Proc Natl Acad Sci U S A; 2015 Feb; 112(7):1953-8. PubMed ID: 25646417 [TBL] [Abstract][Full Text] [Related]
2. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models. Tam RY; Smith LJ; Shoichet MS Acc Chem Res; 2017 Apr; 50(4):703-713. PubMed ID: 28345876 [TBL] [Abstract][Full Text] [Related]
3. Fibroblast morphology on dynamic softening of hydrogels. Previtera ML; Trout KL; Verma D; Chippada U; Schloss RS; Langrana NA Ann Biomed Eng; 2012 May; 40(5):1061-72. PubMed ID: 22160600 [TBL] [Abstract][Full Text] [Related]
4. Active tissue stiffness modulation controls valve interstitial cell phenotype and osteogenic potential in 3D culture. Duan B; Yin Z; Hockaday Kang L; Magin RL; Butcher JT Acta Biomater; 2016 May; 36():42-54. PubMed ID: 26947381 [TBL] [Abstract][Full Text] [Related]
5. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation. Arkenberg MR; Moore DM; Lin CC Acta Biomater; 2019 Jan; 83():83-95. PubMed ID: 30415064 [TBL] [Abstract][Full Text] [Related]
6. Reversible dynamic mechanics of hydrogels for regulation of cellular behavior. Jeon O; Kim TH; Alsberg E Acta Biomater; 2021 Dec; 136():88-98. PubMed ID: 34563721 [TBL] [Abstract][Full Text] [Related]
7. Magnetic nanocomposite hydrogel with tunable stiffness for probing cellular responses to matrix stiffening. Yan T; Rao D; Chen Y; Wang Y; Zhang Q; Wu S Acta Biomater; 2022 Jan; 138():112-123. PubMed ID: 34749001 [TBL] [Abstract][Full Text] [Related]
8. Dynamic Softening or Stiffening a Supramolecular Hydrogel by Ultraviolet or Near-Infrared Light. Zheng Z; Hu J; Wang H; Huang J; Yu Y; Zhang Q; Cheng Y ACS Appl Mater Interfaces; 2017 Jul; 9(29):24511-24517. PubMed ID: 28677394 [TBL] [Abstract][Full Text] [Related]
9. Design of azobenzene-bearing hydrogel with photoswitchable mechanics driven by photo-induced phase transition for in vitro disease modeling. Homma K; Chang AC; Yamamoto S; Tamate R; Ueki T; Nakanishi J Acta Biomater; 2021 Sep; 132():103-113. PubMed ID: 33744500 [TBL] [Abstract][Full Text] [Related]
10. Dynamic Hydrogels with Viscoelasticity and Tunable Stiffness for the Regulation of Cell Behavior and Fate. Zhang Y; Wang Z; Sun Q; Li Q; Li S; Li X Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512435 [TBL] [Abstract][Full Text] [Related]
11. Hydrogel-based methods for engineering cellular microenvironment with spatiotemporal gradients. Wang L; Li Y; Huang G; Zhang X; Pingguan-Murphy B; Gao B; Lu TJ; Xu F Crit Rev Biotechnol; 2016; 36(3):553-65. PubMed ID: 25641330 [TBL] [Abstract][Full Text] [Related]
12. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Wang C; Tong X; Yang F Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441 [TBL] [Abstract][Full Text] [Related]
13. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Toh WS; Lim TC; Kurisawa M; Spector M Biomaterials; 2012 May; 33(15):3835-45. PubMed ID: 22369963 [TBL] [Abstract][Full Text] [Related]
14. Application of cell laden hydrogels with temporally tunable stiffness in biomedical research. AhmadianKia N; Goli-Malekabadi Z; Pournaghmeh S J Biomater Appl; 2023 Aug; 38(2):179-193. PubMed ID: 37357779 [TBL] [Abstract][Full Text] [Related]
15. Designing degradable hydrogels for orthogonal control of cell microenvironments. Kharkar PM; Kiick KL; Kloxin AM Chem Soc Rev; 2013 Sep; 42(17):7335-72. PubMed ID: 23609001 [TBL] [Abstract][Full Text] [Related]
16. Dynamic electro-regulation of the stiffness gradient hydrogels. Yang R; Liang H RSC Adv; 2018 Feb; 8(12):6675-6679. PubMed ID: 35540431 [TBL] [Abstract][Full Text] [Related]
17. Regulation of cell attachment, spreading, and migration by hydrogel substrates with independently tunable mesh size. Xia J; Liu ZY; Han ZY; Yuan Y; Shao Y; Feng XQ; Weitz DA Acta Biomater; 2022 Mar; 141():178-189. PubMed ID: 35041902 [TBL] [Abstract][Full Text] [Related]
18. Engineering three-dimensional cell mechanical microenvironment with hydrogels. Huang G; Wang L; Wang S; Han Y; Wu J; Zhang Q; Xu F; Lu TJ Biofabrication; 2012 Dec; 4(4):042001. PubMed ID: 23164720 [TBL] [Abstract][Full Text] [Related]
19. Spatial and Temporal Control of 3D Hydrogel Viscoelasticity through Phototuning. Crandell P; Stowers R ACS Biomater Sci Eng; 2023 Dec; 9(12):6860-6869. PubMed ID: 38019272 [TBL] [Abstract][Full Text] [Related]
20. Well-Defined Synthetic Copolymers with Pendant Aldehydes Form Biocompatible Strain-Stiffening Hydrogels and Enable Competitive Ligand Displacement. Beeren IAO; Morgan FLC; Rademakers T; Bauer J; Dijkstra PJ; Moroni L; Baker MB J Am Chem Soc; 2024 Sep; 146(35):24330-24347. PubMed ID: 39163519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]