These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 25646452)

  • 1. CRYPTOCHROME-mediated phototransduction by modulation of the potassium ion channel β-subunit redox sensor.
    Fogle KJ; Baik LS; Houl JH; Tran TT; Roberts L; Dahm NA; Cao Y; Zhou M; Holmes TC
    Proc Natl Acad Sci U S A; 2015 Feb; 112(7):2245-50. PubMed ID: 25646452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRYPTOCHROME mediates behavioral executive choice in response to UV light.
    Baik LS; Fogle KJ; Roberts L; Galschiodt AM; Chevez JA; Recinos Y; Nguy V; Holmes TC
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):776-781. PubMed ID: 28062690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling Drosophila melanogaster Cryptochrome Light Activation and Oxidation of the Kvβ Subunit Hyperkinetic NADPH Cofactor.
    Hong G; Pachter R; Ritz T
    J Phys Chem B; 2018 Jun; 122(25):6503-6510. PubMed ID: 29847128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auxiliary Hyperkinetic beta subunit of K+ channels: regulation of firing properties and K+ currents in Drosophila neurons.
    Yao WD; Wu CF
    J Neurophysiol; 1999 May; 81(5):2472-84. PubMed ID: 10322082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drosophila CRY Entrains Clocks in Body Tissues to Light and Maintains Passive Membrane Properties in a Non-clock Body Tissue Independent of Light.
    Agrawal P; Houl JH; Gunawardhana KL; Liu T; Zhou J; Zoran MJ; Hardin PE
    Curr Biol; 2017 Aug; 27(16):2431-2441.e3. PubMed ID: 28781048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate.
    Fogle KJ; Parson KG; Dahm NA; Holmes TC
    Science; 2011 Mar; 331(6023):1409-13. PubMed ID: 21385718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo functional role of the Drosophila hyperkinetic beta subunit in gating and inactivation of Shaker K+ channels.
    Wang JW; Wu CF
    Biophys J; 1996 Dec; 71(6):3167-76. PubMed ID: 8968587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic Fields Modulate Blue-Light-Dependent Regulation of Neuronal Firing by Cryptochrome.
    Giachello CN; Scrutton NS; Jones AR; Baines RA
    J Neurosci; 2016 Oct; 36(42):10742-10749. PubMed ID: 27798129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hyperkinetic, a beta subunit of Shaker voltage-dependent K+ channels, on the oxidation state of presynaptic nerve terminals.
    Ueda A; Wu CF
    J Neurogenet; 2008; 22(2):1-13. PubMed ID: 18428031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of the K channel beta subunit, Hyperkinetic, with eag family members.
    Wilson GF; Wang Z; Chouinard SW; Griffith LC; Ganetzky B
    J Biol Chem; 1998 Mar; 273(11):6389-94. PubMed ID: 9497369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flight and seizure motor patterns in Drosophila mutants: simultaneous acoustic and electrophysiological recordings of wing beats and flight muscle activity.
    Iyengar A; Wu CF
    J Neurogenet; 2014; 28(3-4):316-28. PubMed ID: 25159538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nocturnal mosquito Cryptochrome 1 mediates greater electrophysiological and behavioral responses to blue light relative to diurnal mosquito Cryptochrome 1.
    Au DD; Liu JC; Nguyen TH; Foden AJ; Park SJ; Dimalanta M; Yu Z; Holmes TC
    Front Neurosci; 2022; 16():1042508. PubMed ID: 36532283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryptochrome is present in the compound eyes and a subset of Drosophila's clock neurons.
    Yoshii T; Todo T; Wülbeck C; Stanewsky R; Helfrich-Förster C
    J Comp Neurol; 2008 Jun; 508(6):952-66. PubMed ID: 18399544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular template for a voltage sensor in a novel K+ channel. II. Conservation of a eukaryotic sensor fold in a prokaryotic K+ channel.
    Lundby A; Santos JS; Zazueta C; Montal M
    J Gen Physiol; 2006 Sep; 128(3):293-300. PubMed ID: 16908726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphometric description of the wandering behavior in Drosophila larvae: a phenotypic analysis of K+ channel mutants.
    Wang JW; Soll DR; Wu CF
    J Neurogenet; 2002; 16(1):45-63. PubMed ID: 12420789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple Phototransduction Inputs Integrate to Mediate UV Light-evoked Avoidance/Attraction Behavior in
    Baik LS; Recinos Y; Chevez JA; Au DD; Holmes TC
    J Biol Rhythms; 2019 Aug; 34(4):391-400. PubMed ID: 31140349
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Au DD; Liu JC; Park SJ; Nguyen TH; Dimalanta M; Foden AJ; Holmes TC
    Front Neurosci; 2023; 17():1160353. PubMed ID: 37274190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gating currents associated with intramembrane charge displacement in HERG potassium channels.
    Piper DR; Varghese A; Sanguinetti MC; Tristani-Firouzi M
    Proc Natl Acad Sci U S A; 2003 Sep; 100(18):10534-9. PubMed ID: 12928493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The S4-S5 linker couples voltage sensing and activation of pacemaker channels.
    Chen J; Mitcheson JS; Tristani-Firouzi M; Lin M; Sanguinetti MC
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11277-82. PubMed ID: 11553787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the steric impact of flavin adenine dinucleotide in Drosophila melanogaster cryptochrome function.
    Masiero A; Aufiero S; Minervini G; Moro S; Costa R; Tosatto SC
    Biochem Biophys Res Commun; 2014 Aug; 450(4):1606-11. PubMed ID: 25026553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.