These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 25646506)

  • 21. Single-molecule investigation of the interference between kinesin, tau and MAP2c.
    Seitz A; Kojima H; Oiwa K; Mandelkow EM; Song YH; Mandelkow E
    EMBO J; 2002 Sep; 21(18):4896-905. PubMed ID: 12234929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multivalent electrostatic microtubule interactions of synthetic peptides are sufficient to mimic advanced MAP-like behavior.
    Drechsler H; Xu Y; Geyer VF; Zhang Y; Diez S
    Mol Biol Cell; 2019 Nov; 30(24):2953-2968. PubMed ID: 31599700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. "Caged cytoskeletons": a rapid method for the isolation of microtubule-associated proteins from synchronized plant suspension cells.
    McCutcheon S; Hemsley RJ; Jopson MF; Lloyd CW
    Plant J; 2001 Oct; 28(1):117-22. PubMed ID: 11696192
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of a MAP 2-like ATP-binding protein associated with axoplasmic vesicles that translocate on isolated microtubules.
    Gilbert SP; Sloboda RD
    J Cell Biol; 1986 Sep; 103(3):947-56. PubMed ID: 3091608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Motor protein independent binding of endocytic carrier vesicles to microtubules in vitro.
    Scheel J; Kreis TE
    J Biol Chem; 1991 Sep; 266(27):18141-8. PubMed ID: 1917948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A structural and dynamic visualization of the interaction between MAP7 and microtubules.
    Adler A; Bangera M; Beugelink JW; Bahri S; van Ingen H; Moores CA; Baldus M
    Nat Commun; 2024 Mar; 15(1):1948. PubMed ID: 38431715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Observation of microtubule-based motor protein activity.
    Sloboda RD
    Cold Spring Harb Protoc; 2015 Feb; 2015(2):205-9. PubMed ID: 25646501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A microtubule-associated protein (MAP2) kinase restores microtubule motility in embryonic brain.
    López LA; Sheetz MP
    J Biol Chem; 1995 May; 270(21):12511-7. PubMed ID: 7759496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of motor landing and processivity by the CAP-Gly domain in the KIF13B tail.
    Fan X; McKenney RJ
    Nat Commun; 2023 Aug; 14(1):4715. PubMed ID: 37543636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microtubules and microtubule motors: mechanisms of regulation.
    Thaler CD; Haimo LT
    Int Rev Cytol; 1996; 164():269-327. PubMed ID: 8575892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Microtubules and Microtubule-Associated Proteins in HIV-1 Infection.
    Dharan A; Campbell EM
    J Virol; 2018 Aug; 92(16):. PubMed ID: 29899089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In Vitro Reconstitution of Microtubule Dynamics and Severing Imaged by Label-Free Interference-Reflection Microscopy.
    Kuo YW; Howard J
    Methods Mol Biol; 2022; 2430():73-91. PubMed ID: 35476326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation of polypeptides with microtubule-translocating activity from phragmoplasts of tobacco BY-2 cells.
    Asada T; Shibaoka H
    J Cell Sci; 1994 Aug; 107 ( Pt 8)():2249-57. PubMed ID: 7983184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of non-motile microtubule-associated proteins in virus trafficking.
    Portilho DM; Persson R; Arhel N
    Biomol Concepts; 2016 Dec; 7(5-6):283-292. PubMed ID: 27879481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro motility system to study the role of motor proteins in receptor-ligand sorting.
    Murray JW; Wolkoff AW
    Methods Mol Biol; 2007; 392():143-58. PubMed ID: 17951716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of kinesin activity by phosphorylation of kinesin-associated proteins.
    McIlvain JM; Burkhardt JK; Hamm-Alvarez S; Argon Y; Sheetz MP
    J Biol Chem; 1994 Jul; 269(29):19176-82. PubMed ID: 8034676
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purification and mass spectrometry identification of microtubule-binding proteins from Xenopus egg extracts.
    Gache V; Waridel P; Luche S; Shevchenko A; Popov AV
    Methods Mol Med; 2007; 137():29-43. PubMed ID: 18085220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of membrane nanotube formation by molecular motors.
    Leduc C; Campàs O; Joanny JF; Prost J; Bassereau P
    Biochim Biophys Acta; 2010 Jul; 1798(7):1418-26. PubMed ID: 19948146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-curve fitting and tubulin-lattice signal removal for structure determination of large microtubule-based motors.
    Chai P; Rao Q; Zhang K
    J Struct Biol; 2022 Dec; 214(4):107897. PubMed ID: 36089228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cytoplasmic transport in keratocytes: direct visualization of particle translocation along microtubules.
    Hayden JH; Allen RD; Goldman RD
    Cell Motil; 1983; 3(1):1-19. PubMed ID: 6601992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.