These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 25646570)

  • 1. Theoretical study on the mechanism of aqueous synthesis of formic acid catalyzed by [Ru3+]-EDTA complex.
    Chen ZN; Chan KY; Pulleri JK; Kong J; Hu H
    Inorg Chem; 2015 Feb; 54(4):1314-24. PubMed ID: 25646570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of H2 on the gas-phase decomposition of formic acid: a theoretical study.
    Hu SW; Wang XY; Chu TW; Liu XQ
    J Phys Chem A; 2005 Oct; 109(40):9129-40. PubMed ID: 16332022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen Production from Formic Acid and Formaldehyde over Ruthenium Catalysts in Water.
    Patra S; Singh SK
    Inorg Chem; 2020 Apr; 59(7):4234-4243. PubMed ID: 32207936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient catalytic decomposition of formic acid for the selective generation of H2 and H/D exchange with a water-soluble rhodium complex in aqueous solution.
    Fukuzumi S; Kobayashi T; Suenobu T
    ChemSusChem; 2008; 1(10):827-34. PubMed ID: 18846597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a rational design of ruthenium CO2 hydrogenation catalysts by Ab initio metadynamics.
    Urakawa A; Iannuzzi M; Hutter J; Baiker A
    Chemistry; 2007; 13(24):6828-40. PubMed ID: 17566132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient disproportionation of formic acid to methanol using molecular ruthenium catalysts.
    Savourey S; Lefèvre G; Berthet JC; Thuéry P; Genre C; Cantat T
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10466-70. PubMed ID: 25088282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical investigation of water gas shift reaction catalyzed by iron group carbonyl complexes M(CO)5 (M = Fe, Ru, Os).
    Chen Y; Zhang F; Xu C; Gao J; Zhai D; Zhao Z
    J Phys Chem A; 2012 Mar; 116(10):2529-35. PubMed ID: 22309054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.
    Laurenczy G
    Chimia (Aarau); 2011; 65(9):663-6. PubMed ID: 22026175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of the Water-Gas Shift Reaction Catalyzed by Efficient Ruthenium-Based Catalysts: A Computational and Experimental Study.
    Stepić R; Wick CR; Strobel V; Berger D; Vučemilović-Alagić N; Haumann M; Wasserscheid P; Smith AS; Smith DM
    Angew Chem Int Ed Engl; 2019 Jan; 58(3):741-745. PubMed ID: 30467935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unusually large tunneling effect on highly efficient generation of hydrogen and hydrogen isotopes in pH-selective decomposition of formic acid catalyzed by a heterodinuclear iridium-ruthenium complex in water.
    Fukuzumi S; Kobayashi T; Suenobu T
    J Am Chem Soc; 2010 Feb; 132(5):1496-7. PubMed ID: 20085352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocatalytic CO2 reduction to formic acid using a Ru(II)-Re(I) supramolecular complex in an aqueous solution.
    Nakada A; Koike K; Nakashima T; Morimoto T; Ishitani O
    Inorg Chem; 2015 Feb; 54(4):1800-7. PubMed ID: 25654586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective oxidation of thiourea with H(2)O(2) catalyzed by [Ru(III)(edta)(H(2)O)](-): kinetic and mechanistic studies.
    Chatterjee D; Rothbart S; van Eldik R
    Dalton Trans; 2013 Apr; 42(13):4725-9. PubMed ID: 23361611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron-catalyzed hydrogen production from formic acid.
    Boddien A; Loges B; Gärtner F; Torborg C; Fumino K; Junge H; Ludwig R; Beller M
    J Am Chem Soc; 2010 Jul; 132(26):8924-34. PubMed ID: 20550131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of the Water-Gas Shift Reaction Catalyzed by Ruthenium Carbonyl Complexes.
    Liu N; Guo L; Cao Z; Li W; Zheng X; Shi Y; Guo J; Xi Y
    J Phys Chem A; 2016 Apr; 120(15):2408-19. PubMed ID: 27064302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen Production from Aqueous Solutions of Urea with Ruthenium-based Catalysts.
    Furukawa S; Suzuki R; Ochi K; Yashima T; Komatsu T
    ChemSusChem; 2015 Jun; 8(12):2028-30. PubMed ID: 25891973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal reactions of formaldehyde and formic acid: free-energy analysis of equilibrium.
    Matubayasi N; Nakahara M
    J Chem Phys; 2005 Feb; 122(7):074509. PubMed ID: 15743256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formic acid catalyzed gas-phase reaction of H2O with SO3 and the reverse reaction: a theoretical study.
    Long B; Long ZW; Wang YB; Tan XF; Han YH; Long CY; Qin SJ; Zhang WJ
    Chemphyschem; 2012 Jan; 13(1):323-9. PubMed ID: 22095771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ru(III)(edta) mediated oxidation of azide in the presence of hydrogen peroxide. Azide versus peroxide activation.
    Chatterjee D; Franke A; Oszajca M; van Eldik R
    Dalton Trans; 2014 Feb; 43(8):3087-94. PubMed ID: 24178674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon dioxide hydrogenation catalyzed by a ruthenium dihydride: a DFT and high-pressure spectroscopic investigation.
    Urakawa A; Jutz F; Laurenczy G; Baiker A
    Chemistry; 2007; 13(14):3886-99. PubMed ID: 17294492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N'-Diimine Ligand.
    Guan C; Zhang DD; Pan Y; Iguchi M; Ajitha MJ; Hu J; Li H; Yao C; Huang MH; Min S; Zheng J; Himeda Y; Kawanami H; Huang KW
    Inorg Chem; 2017 Jan; 56(1):438-445. PubMed ID: 27983821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.