These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 25646570)

  • 21. Ru(3)(CO)(12) in Acidic Media. Intermediates of the Acid-Cocatalyzed Water-Gas Shift Reaction (WGSR).
    Fachinetti G; Funaioli T; Lecci L; Marchetti F
    Inorg Chem; 1996 Dec; 35(25):7217-7224. PubMed ID: 11666910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Base-free non-noble-metal-catalyzed hydrogen generation from formic acid: scope and mechanistic insights.
    Mellmann D; Barsch E; Bauer M; Grabow K; Boddien A; Kammer A; Sponholz P; Bentrup U; Jackstell R; Junge H; Laurenczy G; Ludwig R; Beller M
    Chemistry; 2014 Oct; 20(42):13589-602. PubMed ID: 25196789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A rechargeable hydrogen battery based on Ru catalysis.
    Hsu SF; Rommel S; Eversfield P; Muller K; Klemm E; Thiel WR; Plietker B
    Angew Chem Int Ed Engl; 2014 Jul; 53(27):7074-8. PubMed ID: 24803414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. H-Bonding of Formic Acid with Its Decomposition Products: A Matrix Isolation and Computational Study of the HCOOH/CO and HCOOH/CO₂ Complexes.
    Rozenberg M; Loewenschuss A; Nielsen CJ
    J Phys Chem A; 2015 Aug; 119(31):8497-502. PubMed ID: 26159036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water-gas shift on gold catalysts: catalyst systems and fundamental studies.
    Tao FF; Ma Z
    Phys Chem Chem Phys; 2013 Oct; 15(37):15260-70. PubMed ID: 23928722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism.
    Burch R
    Phys Chem Chem Phys; 2006 Dec; 8(47):5483-500. PubMed ID: 17136264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes.
    Tamaki Y; Morimoto T; Koike K; Ishitani O
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15673-8. PubMed ID: 22908243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid.
    Zhou WP; Lewera A; Larsen R; Masel RI; Bagus PS; Wieckowski A
    J Phys Chem B; 2006 Jul; 110(27):13393-8. PubMed ID: 16821860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reaction of [RuIII(edta)(H2O)]- with H2O2 in aqueous solution. Kinetic and mechanistic investigation.
    Chatterjee D; Mitra A; van Eldik R
    Dalton Trans; 2007 Mar; (9):943-8. PubMed ID: 17308674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solid Molecular Phosphine Catalysts for Formic Acid Decomposition in the Biorefinery.
    Hausoul PJ; Broicher C; Vegliante R; Göb C; Palkovits R
    Angew Chem Int Ed Engl; 2016 Apr; 55(18):5597-601. PubMed ID: 27043017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics and mechanism of O-O bond cleavage in the reaction of [RuIII(edta)(H2O)]- with hydroperoxides in aqueous solution.
    Chatterjee D; Sikdar A; Patnam VR; Theodoridis A; van Eldik R
    Dalton Trans; 2008 Aug; (29):3851-6. PubMed ID: 18629407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acid-, water- and high-temperature-stable ruthenium complexes for the total catalytic deoxygenation of glycerol to propane.
    Taher D; Thibault ME; Di Mondo D; Jennings M; Schlaf M
    Chemistry; 2009 Oct; 15(39):10132-43. PubMed ID: 19693757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of iron complexes catalyzed in the
    Shen X; Wang W; Wang Q; Liu J; Huang F; Sun C; Yang C; Chen D
    Phys Chem Chem Phys; 2021 Aug; 23(31):16675-16689. PubMed ID: 34337631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalytic hydrogen production from paraformaldehyde and water using an organoiridium complex.
    Suenobu T; Isaka Y; Shibata S; Fukuzumi S
    Chem Commun (Camb); 2015 Jan; 51(9):1670-2. PubMed ID: 25501937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stochastic surface walking reaction sampling for resolving heterogeneous catalytic reaction network: A revisit to the mechanism of water-gas shift reaction on Cu.
    Zhang XJ; Shang C; Liu ZP
    J Chem Phys; 2017 Oct; 147(15):152706. PubMed ID: 29055300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction.
    Sharma PK; De Visser SP; Ogliaro F; Shaik S
    J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The origin of the selectivity and activity of ruthenium-cluster catalysts for fuel-cell feed-gas purification: a gas-phase approach.
    Lang SM; Bernhardt TM; Krstić M; Bonačić-Koutecký V
    Angew Chem Int Ed Engl; 2014 May; 53(21):5467-71. PubMed ID: 24803209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective formic acid decomposition for high-pressure hydrogen generation: a mechanistic study.
    Fellay C; Yan N; Dyson PJ; Laurenczy G
    Chemistry; 2009; 15(15):3752-60. PubMed ID: 19229942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ru-Catalyzed Reverse Water Gas Shift Reaction with Near-Unity Selectivity and Superior Stability.
    Tang R; Zhu Z; Li C; Xiao M; Wu Z; Zhang D; Zhang C; Xiao Y; Chu M; Genest A; Rupprechter G; Zhang L; Zhang X; He L
    ACS Mater Lett; 2021 Dec; 3(12):1652-1659. PubMed ID: 34901871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases.
    Fujita E; Muckerman JT; Himeda Y
    Biochim Biophys Acta; 2013; 1827(8-9):1031-8. PubMed ID: 23174332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.