BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 25646584)

  • 1. Transient Sp8+ handlebar-like interneuron structure traversing the corpus callosum during the second postnatal week.
    Cai Y; She K; Wang C
    Neuroreport; 2015 Mar; 26(4):216-22. PubMed ID: 25646584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A subpopulation of dorsal lateral/caudal ganglionic eminence-derived neocortical interneurons expresses the transcription factor Sp8.
    Ma T; Zhang Q; Cai Y; You Y; Rubenstein JL; Yang Z
    Cereb Cortex; 2012 Sep; 22(9):2120-30. PubMed ID: 22021915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription factors Sp8 and Sp9 regulate the development of caudal ganglionic eminence-derived cortical interneurons.
    Wei S; Du H; Li Z; Tao G; Xu Z; Song X; Shang Z; Su Z; Chen H; Wen Y; Liu G; You Y; Zhang Z; Yang Z
    J Comp Neurol; 2019 Dec; 527(17):2860-2874. PubMed ID: 31070778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dual role for the transcription factor Sp8 in postnatal neurogenesis.
    Gaborieau E; Hurtado-Chong A; Fernández M; Azim K; Raineteau O
    Sci Rep; 2018 Sep; 8(1):14560. PubMed ID: 30266956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two specific populations of GABAergic neurons originating from the medial and the caudal ganglionic eminences aid in proper navigation of callosal axons.
    Niquille M; Minocha S; Hornung JP; Rufer N; Valloton D; Kessaris N; Alfonsi F; Vitalis T; Yanagawa Y; Devenoges C; Dayer A; Lebrand C
    Dev Neurobiol; 2013 Sep; 73(9):647-72. PubMed ID: 23420573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain.
    Touzot A; Ruiz-Reig N; Vitalis T; Studer M
    Development; 2016 May; 143(10):1753-65. PubMed ID: 27034423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transcription factor Sp8 is required for the production of parvalbumin-expressing interneurons in the olfactory bulb.
    Li X; Sun C; Lin C; Ma T; Madhavan MC; Campbell K; Yang Z
    J Neurosci; 2011 Jun; 31(23):8450-5. PubMed ID: 21653849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain.
    Andrews W; Liapi A; Plachez C; Camurri L; Zhang J; Mori S; Murakami F; Parnavelas JG; Sundaresan V; Richards LJ
    Development; 2006 Jun; 133(11):2243-52. PubMed ID: 16690755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sonic hedgehog maintains the identity of cortical interneuron progenitors in the ventral telencephalon.
    Xu Q; Wonders CP; Anderson SA
    Development; 2005 Nov; 132(22):4987-98. PubMed ID: 16221724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some glial progenitors in the neonatal subventricular zone migrate through the corpus callosum to the contralateral cerebral hemisphere.
    Kakita A; Zerlin M; Takahashi H; Goldman JE
    J Comp Neurol; 2003 Apr; 458(4):381-8. PubMed ID: 12619072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EphA/ephrin A reverse signaling promotes the migration of cortical interneurons from the medial ganglionic eminence.
    Steinecke A; Gampe C; Zimmer G; Rudolph J; Bolz J
    Development; 2014 Jan; 141(2):460-71. PubMed ID: 24381199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurons in the corpus callosum of the cat during postnatal development.
    Riederer BM; Berbel P; Innocenti GM
    Eur J Neurosci; 2004 Apr; 19(8):2039-46. PubMed ID: 15090031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of transitory corpus callosum axons projecting to developing cat visual cortex revealed by DiI.
    Elberger AJ
    J Comp Neurol; 1993 Jul; 333(3):326-42. PubMed ID: 8349847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NKX2.1 specifies cortical interneuron fate by activating Lhx6.
    Du T; Xu Q; Ocbina PJ; Anderson SA
    Development; 2008 Apr; 135(8):1559-67. PubMed ID: 18339674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental changes and subcellular location in inhibitor of DNA binding 2 (Id2) immunoreactivity in the rat Corpus callosum.
    Chen XS; Chen XH; Ye JN; Cai QY; Zhan XL; Liu Z; Yao ZX
    Acta Histochem; 2012 Nov; 114(7):653-8. PubMed ID: 22172709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maturation of the corpus callosum of the rat: I. Influence of thyroid hormones on the topography of callosal projections.
    Gravel C; Hawkes R
    J Comp Neurol; 1990 Jan; 291(1):128-46. PubMed ID: 2298927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shh maintains Nkx2.1 in the MGE by a Gli3-independent mechanism.
    Gulacsi A; Anderson SA
    Cereb Cortex; 2006 Jul; 16 Suppl 1():i89-95. PubMed ID: 16766713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular patterns of transcription factor expression in developing cortical interneurons.
    Cobos I; Long JE; Thwin MT; Rubenstein JL
    Cereb Cortex; 2006 Jul; 16 Suppl 1():i82-8. PubMed ID: 16766712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation/maturation of neuropeptide Y neurons in the corpus callosum is promoted by brain-derived neurotrophic factor in mouse brain slice cultures.
    Yoshimura R; Ito K; Endo Y
    Neurosci Lett; 2009 Feb; 450(3):262-5. PubMed ID: 19103259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multidirectional and multizonal tangential migration of GABAergic interneurons in the developing cerebral cortex.
    Tanaka DH; Maekawa K; Yanagawa Y; Obata K; Murakami F
    Development; 2006 Jun; 133(11):2167-76. PubMed ID: 16672340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.