These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 25646585)

  • 21. Correspondence of visual evoked potentials with FMRI signals in human visual cortex.
    Whittingstall K; Wilson D; Schmidt M; Stroink G
    Brain Topogr; 2008 Dec; 21(2):86-92. PubMed ID: 18841455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visual pattern adaptation in subjects with photoparoxysmal EEG response: evidence for increased visual cortical excitability.
    Shepherd AJ; Siniatchkin M
    Invest Ophthalmol Vis Sci; 2009 Mar; 50(3):1470-6. PubMed ID: 19029037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Visual evoked potentials in rabbit's visual cortex reflect variations in orientation and intensity of lines].
    Polianskiĭ VB; Alymkulov DE; Sokolov EN; Radzievskaia MG; Ruderman GL
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2008; 58(6):688-99. PubMed ID: 19178071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Altered cortical visual processing in individuals with a spreading photoparoxysmal EEG response.
    Siniatchkin M; Moeller F; Shepherd A; Siebner H; Stephani U
    Eur J Neurosci; 2007 Jul; 26(2):529-36. PubMed ID: 17650123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Repetitive paired-pulse transcranial magnetic stimulation over the visual cortex alters visual recovery function.
    Kimura T; Ogata K; Tobimatsu S
    Brain Stimul; 2013 May; 6(3):298-305. PubMed ID: 22698874
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-invasive brain-to-brain interface (BBI): establishing functional links between two brains.
    Yoo SS; Kim H; Filandrianos E; Taghados SJ; Park S
    PLoS One; 2013; 8(4):e60410. PubMed ID: 23573251
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation.
    Younan Y; Deffieux T; Larrat B; Fink M; Tanter M; Aubry JF
    Med Phys; 2013 Aug; 40(8):082902. PubMed ID: 23927357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo.
    Fisher JAN; Gumenchuk I
    J Neural Eng; 2018 Jun; 15(3):035004. PubMed ID: 29436519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Visual evoked potential in guinea pigs].
    Suzuki M; Sitizyo K; Takeuchi T
    Nihon Seirigaku Zasshi; 1990; 52(2):47-53. PubMed ID: 2332836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time-frequency analysis of visual evoked potentials for interhemispheric transfer time and proportion in callosal fibers of different diameters.
    Ulusoy I; Halici U; Nalçaci E; Anaç I; Leblebicio Eroğlu K; Başar-Eroğlu C
    Biol Cybern; 2004 Apr; 90(4):291-301. PubMed ID: 15085348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of visual task difficulty and attentional direction on the detection of acoustic change as indexed by the Mismatch Negativity.
    Muller-Gass A; Stelmack RM; Campbell KB
    Brain Res; 2006 Mar; 1078(1):112-30. PubMed ID: 16497283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability.
    Romei V; Rihs T; Brodbeck V; Thut G
    Neuroreport; 2008 Jan; 19(2):203-8. PubMed ID: 18185109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex.
    Lee W; Kim H; Jung Y; Song IU; Chung YA; Yoo SS
    Sci Rep; 2015 Mar; 5():8743. PubMed ID: 25735418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustic noise improves visual perception and modulates occipital oscillatory states.
    Gleiss S; Kayser C
    J Cogn Neurosci; 2014 Apr; 26(4):699-711. PubMed ID: 24236698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A neurophysiologically-based mathematical model of flash visual evoked potentials.
    Jansen BH; Zouridakis G; Brandt ME
    Biol Cybern; 1993; 68(3):275-83. PubMed ID: 8452897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linking perception to neural activity as measured by visual evoked potentials.
    Norcia AM
    Vis Neurosci; 2013 Nov; 30(5-6):223-7. PubMed ID: 23879990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patch Clamp Technology for Focused Ultrasonic (FUS) Neuromodulation.
    Kim ES; Chang SY
    Methods Mol Biol; 2022; 2393():657-670. PubMed ID: 34837205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cortical dynamics during naturalistic sensory stimulations: experiments and models.
    Mazzoni A; Brunel N; Cavallari S; Logothetis NK; Panzeri S
    J Physiol Paris; 2011; 105(1-3):2-15. PubMed ID: 21907800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial frequency-specific potentiation of human visual-evoked potentials.
    McNair NA; Clapp WC; Hamm JP; Teyler TJ; Corballis MC; Kirk IJ
    Neuroreport; 2006 May; 17(7):739-41. PubMed ID: 16641679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Specific modulation of neuronal responses to light of different intensities by sound in the rabbit's primary visual cortex].
    Polianskiĭ VB; Alymkulov DÉ; Evtikhin DV; Chernyshev BV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2012; 62(4):440-52. PubMed ID: 23035561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.