BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25646613)

  • 1. Quantitative Real-Time PCR (qPCR) Workflow for Analyzing Staphylococcus aureus Gene Expression.
    Lewis AM; Rice KC
    Methods Mol Biol; 2016; 1373():143-54. PubMed ID: 25646613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring gene expression: quantitative real-time rt-PCR.
    Wagner EM
    Methods Mol Biol; 2013; 1027():19-45. PubMed ID: 23912981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The alternative sigma factor B modulates virulence gene expression in a murine Staphylococcus aureus infection model but does not influence kidney gene expression pattern of the host.
    Depke M; Burian M; Schäfer T; Bröker BM; Ohlsen K; Völker U
    Int J Med Microbiol; 2012 Jan; 302(1):33-9. PubMed ID: 22019488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of bacterial transcripts during infection using competitive reverse transcription-PCR (RT-PCR) and LightCycler RT-PCR.
    Goerke C; Bayer MG; Wolz C
    Clin Diagn Lab Immunol; 2001 Mar; 8(2):279-82. PubMed ID: 11238208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-Sequencing of Staphylococcus aureus Messenger RNA.
    Carroll RK; Weiss A; Shaw LN
    Methods Mol Biol; 2016; 1373():131-41. PubMed ID: 25646612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absolute and relative real-time PCR in the quantification of tst gene expression among methicillin-resistant Staphylococcus aureus: evaluation by two mathematical models.
    Chini V; Foka A; Dimitracopoulos G; Spiliopoulou I
    Lett Appl Microbiol; 2007 Nov; 45(5):479-84. PubMed ID: 17958553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Use of the real-time RT-PCR method for investigation of small stable RNA expression level in human epidermoid carcinoma cells A431].
    Nikitina TV; Nazarova NIu; Tishchenko LI; Tuohimaa P; Sedova VM
    Tsitologiia; 2003; 45(4):392-402. PubMed ID: 14520871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic analysis of Staphylococcus aureus using microarray and advanced next-generation RNA-seq technologies.
    Lei T; Becker A; Ji Y
    Methods Mol Biol; 2014; 1085():213-29. PubMed ID: 24085699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression analysis in early embryos through reverse transcription quantitative PCR (RT-qPCR).
    Peynot N; Duranthon V; Khan DR
    Methods Mol Biol; 2015; 1222():181-96. PubMed ID: 25287347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional adaptations during long-term persistence of Staphylococcus aureus in the airways of a cystic fibrosis patient.
    Windmüller N; Witten A; Block D; Bunk B; Spröer C; Kahl BC; Mellmann A
    Int J Med Microbiol; 2015 Jan; 305(1):38-46. PubMed ID: 25439320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Real-time RT PCR with DNA subtraction for relative quantification of gene expression in Staphylococcus aureus].
    Xiang L; Jiang Y; Liu W; Bi Y; Zhao F; Huo G
    Wei Sheng Wu Xue Bao; 2008 Apr; 48(4):526-31. PubMed ID: 18590241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies.
    Rajeevan MS; Ranamukhaarachchi DG; Vernon SD; Unger ER
    Methods; 2001 Dec; 25(4):443-51. PubMed ID: 11846613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time PCR for Gene Expression Quantification in Asthma.
    Segundo-Val IS; García-Solaesa V; García-Sánchez A
    Methods Mol Biol; 2016; 1434():45-55. PubMed ID: 27300530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of quantitative real-time PCR workflow modifications on 16S rRNA and tetA gene quantification in environmental samples.
    Nõlvak H; Truu M; Truu J
    Sci Total Environ; 2012 Jun; 426():351-8. PubMed ID: 22521102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct detection of Staphylococcus aureus from adult and neonate nasal swab specimens using real-time polymerase chain reaction.
    Paule SM; Pasquariello AC; Hacek DM; Fisher AG; Thomson RB; Kaul KL; Peterson LR
    J Mol Diagn; 2004 Aug; 6(3):191-6. PubMed ID: 15269294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double triplex real-time PCR assay for simultaneous detection of Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis, and Staphylococcus haemolyticus and determination of their methicillin resistance directly from positive blood culture bottles.
    Kilic A; Basustaoglu AC
    Res Microbiol; 2011 Dec; 162(10):1060-6. PubMed ID: 21925597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of TaqMan and SYBR Green qPCR methods for quantitative gene expression in tung tree tissues.
    Cao H; Shockey JM
    J Agric Food Chem; 2012 Dec; 60(50):12296-303. PubMed ID: 23176309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of suitable internal controls to study expression of a Staphylococcus aureus multidrug resistance system by quantitative real-time PCR.
    Theis T; Skurray RA; Brown MH
    J Microbiol Methods; 2007 Aug; 70(2):355-62. PubMed ID: 17590462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of virulence-associated gene transcripts in epidemic methicillin resistant Staphylococcus aureus by real-time PCR.
    Sabersheikh S; Saunders NA
    Mol Cell Probes; 2004 Feb; 18(1):23-31. PubMed ID: 15036366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic analysis of gene expression of Staphylococcus aureus.
    Yu C; Sun J; Zheng L; Ji Y
    Methods Mol Biol; 2007; 391():169-78. PubMed ID: 18025677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.