BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 25646681)

  • 1. Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials.
    Wang X; Duch MC; Mansukhani N; Ji Z; Liao YP; Wang M; Zhang H; Sun B; Chang CH; Li R; Lin S; Meng H; Xia T; Hersam MC; Nel AE
    ACS Nano; 2015 Mar; 9(3):3032-43. PubMed ID: 25646681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity.
    Li R; Wang X; Ji Z; Sun B; Zhang H; Chang CH; Lin S; Meng H; Liao YP; Wang M; Li Z; Hwang AA; Song TB; Xu R; Yang Y; Zink JI; Nel AE; Xia T
    ACS Nano; 2013 Mar; 7(3):2352-68. PubMed ID: 23414138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung.
    Wang X; Xia T; Ntim SA; Ji Z; Lin S; Meng H; Chung CH; George S; Zhang H; Wang M; Li N; Yang Y; Castranova V; Mitra S; Bonner JC; Nel AE
    ACS Nano; 2011 Dec; 5(12):9772-87. PubMed ID: 22047207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pluronic F108 coating decreases the lung fibrosis potential of multiwall carbon nanotubes by reducing lysosomal injury.
    Wang X; Xia T; Duch MC; Ji Z; Zhang H; Li R; Sun B; Lin S; Meng H; Liao YP; Wang M; Song TB; Yang Y; Hersam MC; Nel AE
    Nano Lett; 2012 Jun; 12(6):3050-61. PubMed ID: 22546002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicological Profiling of Highly Purified Metallic and Semiconducting Single-Walled Carbon Nanotubes in the Rodent Lung and E. coli.
    Wang X; Mansukhani ND; Guiney LM; Lee JH; Li R; Sun B; Liao YP; Chang CH; Ji Z; Xia T; Hersam MC; Nel AE
    ACS Nano; 2016 Jun; 10(6):6008-19. PubMed ID: 27159184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicological Profiling of Highly Purified Single-Walled Carbon Nanotubes with Different Lengths in the Rodent Lung and Escherichia Coli.
    Wang X; Lee JH; Li R; Liao YP; Kang J; Chang CH; Guiney LM; Mirshafiee V; Li L; Lu J; Xia T; Hersam MC; Nel AE
    Small; 2018 Jun; 14(23):e1703915. PubMed ID: 29733549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic layer deposition coating of carbon nanotubes with aluminum oxide alters pro-fibrogenic cytokine expression by human mononuclear phagocytes in vitro and reduces lung fibrosis in mice in vivo.
    Taylor AJ; McClure CD; Shipkowski KA; Thompson EA; Hussain S; Garantziotis S; Parsons GN; Bonner JC
    PLoS One; 2014; 9(9):e106870. PubMed ID: 25216247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhalation toxicity assessment of carbon-based nanoparticles.
    Morimoto Y; Horie M; Kobayashi N; Shinohara N; Shimada M
    Acc Chem Res; 2013 Mar; 46(3):770-81. PubMed ID: 22574947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Molecular Influence of Graphene and Graphene Oxide on the Immune System Under In Vitro and In Vivo Conditions.
    Dudek I; Skoda M; Jarosz A; Szukiewicz D
    Arch Immunol Ther Exp (Warsz); 2016 Jun; 64(3):195-215. PubMed ID: 26502273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expert consensus on an in vitro approach to assess pulmonary fibrogenic potential of aerosolized nanomaterials.
    Clippinger AJ; Ahluwalia A; Allen D; Bonner JC; Casey W; Castranova V; David RM; Halappanavar S; Hotchkiss JA; Jarabek AM; Maier M; Polk W; Rothen-Rutishauser B; Sayes CM; Sayre P; Sharma M; Stone V
    Arch Toxicol; 2016 Jul; 90(7):1769-83. PubMed ID: 27121469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals.
    Ma J; Liu R; Wang X; Liu Q; Chen Y; Valle RP; Zuo YY; Xia T; Liu S
    ACS Nano; 2015 Oct; 9(10):10498-515. PubMed ID: 26389709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure Activity Relationships of Engineered Nanomaterials in inducing NLRP3 Inflammasome Activation and Chronic Lung Fibrosis.
    Wang X; Sun B; Liu S; Xia T
    NanoImpact; 2017 Apr; 6():99-108. PubMed ID: 28480337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of pulmonary and systemic toxicity following lung exposure to graphite nanoplates: a member of the graphene-based nanomaterial family.
    Roberts JR; Mercer RR; Stefaniak AB; Seehra MS; Geddam UK; Chaudhuri IS; Kyrlidis A; Kodali VK; Sager T; Kenyon A; Bilgesu SA; Eye T; Scabilloni JF; Leonard SS; Fix NR; Schwegler-Berry D; Farris BY; Wolfarth MG; Porter DW; Castranova V; Erdely A
    Part Fibre Toxicol; 2016 Jun; 13(1):34. PubMed ID: 27328692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic-property dependent interactions between tetracycline and graphene nanomaterials in aqueous solution.
    He L; Liu FF; Zhao M; Qi Z; Sun X; Afzal MZ; Sun X; Li Y; Hao J; Wang S
    J Environ Sci (China); 2018 Apr; 66():286-294. PubMed ID: 29628096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum.
    Wang X; Liu X; Han H
    Colloids Surf B Biointerfaces; 2013 Mar; 103():136-42. PubMed ID: 23201730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersing carbon-based nanomaterials in aqueous phase by graphene oxides.
    Li Y; Yang J; Zhao Q; Li Y
    Langmuir; 2013 Nov; 29(44):13527-34. PubMed ID: 24099629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safety considerations for graphene: lessons learnt from carbon nanotubes.
    Bussy C; Ali-Boucetta H; Kostarelos K
    Acc Chem Res; 2013 Mar; 46(3):692-701. PubMed ID: 23163827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct fibrogenic effects of dispersed single-walled carbon nanotubes on human lung fibroblasts.
    Wang L; Mercer RR; Rojanasakul Y; Qiu A; Lu Y; Scabilloni JF; Wu N; Castranova V
    J Toxicol Environ Health A; 2010; 73(5):410-22. PubMed ID: 20155582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages.
    Wan B; Wang ZX; Lv QY; Dong PX; Zhao LX; Yang Y; Guo LH
    Toxicol Lett; 2013 Aug; 221(2):118-27. PubMed ID: 23769962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model.
    Li R; Guiney LM; Chang CH; Mansukhani ND; Ji Z; Wang X; Liao YP; Jiang W; Sun B; Hersam MC; Nel AE; Xia T
    ACS Nano; 2018 Feb; 12(2):1390-1402. PubMed ID: 29328670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.