These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 25646716)
1. High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap. Kang JW; So PT; Dasari RR; Lim DK Nano Lett; 2015 Mar; 15(3):1766-72. PubMed ID: 25646716 [TBL] [Abstract][Full Text] [Related]
2. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging. Hu C; Shen J; Yan J; Zhong J; Qin W; Liu R; Aldalbahi A; Zuo X; Song S; Fan C; He D Nanoscale; 2016 Jan; 8(4):2090-6. PubMed ID: 26701141 [TBL] [Abstract][Full Text] [Related]
4. High surface-enhanced Raman scattering performance of individual gold nanoflowers and their application in live cell imaging. Li Q; Jiang Y; Han R; Zhong X; Liu S; Li ZY; Sha Y; Xu D Small; 2013 Mar; 9(6):927-32. PubMed ID: 23180641 [TBL] [Abstract][Full Text] [Related]
6. Integrated Nanogap Platform for Sub-Volt Dielectrophoretic Trapping and Real-Time Raman Imaging of Biological Nanoparticles. Ertsgaard CT; Wittenberg NJ; Klemme DJ; Barik A; Shih WC; Oh SH Nano Lett; 2018 Sep; 18(9):5946-5953. PubMed ID: 30071732 [TBL] [Abstract][Full Text] [Related]
7. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging. Li J; Zhu Z; Zhu B; Ma Y; Lin B; Liu R; Song Y; Lin H; Tu S; Yang C Anal Chem; 2016 Aug; 88(15):7828-36. PubMed ID: 27385563 [TBL] [Abstract][Full Text] [Related]
8. Aggregation induced Raman scattering of squaraine dye: Implementation in diagnosis of cervical cancer dysplasia by SERS imaging. Narayanan N; Karunakaran V; Paul W; Venugopal K; Sujathan K; Kumar Maiti K Biosens Bioelectron; 2015 Aug; 70():145-52. PubMed ID: 25801955 [TBL] [Abstract][Full Text] [Related]
9. Ultrabright gap-enhanced Raman tags for high-speed bioimaging. Zhang Y; Gu Y; He J; Thackray BD; Ye J Nat Commun; 2019 Aug; 10(1):3905. PubMed ID: 31467266 [TBL] [Abstract][Full Text] [Related]
10. Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres. Lee S; Chon H; Lee M; Choo J; Shin SY; Lee YH; Rhyu IJ; Son SW; Oh CH Biosens Bioelectron; 2009 Mar; 24(7):2260-3. PubMed ID: 19056254 [TBL] [Abstract][Full Text] [Related]
11. Recent Advances in the Synthesis of Intra-Nanogap Au Plasmonic Nanostructures for Bioanalytical Applications. Yang W; Lim DK Adv Mater; 2020 Dec; 32(51):e2002219. PubMed ID: 33063429 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, Optical Properties, and Multiplexed Raman Bio-Imaging of Surface Roughness-Controlled Nanobridged Nanogap Particles. Lee JH; Oh JW; Nam SH; Cha YS; Kim GH; Rhim WK; Kim NH; Kim J; Han SW; Suh YD; Nam JM Small; 2016 Sep; 12(34):4726-34. PubMed ID: 27028989 [TBL] [Abstract][Full Text] [Related]
13. Metal carbonyl-gold nanoparticle conjugates for live-cell SERS imaging. Kong KV; Lam Z; Goh WD; Leong WK; Olivo M Angew Chem Int Ed Engl; 2012 Sep; 51(39):9796-9. PubMed ID: 22945468 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the surface enhanced raman scattering (SERS) of bacteria. Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017 [TBL] [Abstract][Full Text] [Related]
15. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength. Kim K; Choi JY; Lee HB; Shin KS J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550 [TBL] [Abstract][Full Text] [Related]
16. A High-Sensitivity and Low-Power Theranostic Nanosystem for Cell SERS Imaging and Selectively Photothermal Therapy Using Anti-EGFR-Conjugated Reduced Graphene Oxide/Mesoporous Silica/AuNPs Nanosheets. Chen YW; Liu TY; Chen PJ; Chang PH; Chen SY Small; 2016 Mar; 12(11):1458-68. PubMed ID: 26814978 [TBL] [Abstract][Full Text] [Related]
17. Gap-enhanced resonance Raman tags for live-cell imaging. Gu Y; Bi X; Ye J J Mater Chem B; 2020 Aug; 8(31):6944-6955. PubMed ID: 32490472 [TBL] [Abstract][Full Text] [Related]
18. Facile synthesis of thiol and alkynyl contained SERS reporter molecular and its usage in assembly of polydopamine protected bioorthogonal SERS tag for live cell imaging. Zhang L; Zhang R; Gao M; Zhang X Talanta; 2016 Sep; 158():315-321. PubMed ID: 27343611 [TBL] [Abstract][Full Text] [Related]
19. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells. Adarsh N; Ramya AN; Maiti KK; Ramaiah D Chemistry; 2017 Oct; 23(57):14286-14291. PubMed ID: 28796314 [TBL] [Abstract][Full Text] [Related]
20. Size-dependent apoptotic activity of gold nanoparticles on osteosarcoma cells correlated with SERS signal. Chakraborty A; Das A; Raha S; Barui A J Photochem Photobiol B; 2020 Jan; 203():111778. PubMed ID: 31931389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]