These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 25646716)
21. Microarray based Raman spectroscopic detection with gold nanoparticle probes. Li T; Guo L; Wang Z Biosens Bioelectron; 2008 Feb; 23(7):1125-30. PubMed ID: 18068972 [TBL] [Abstract][Full Text] [Related]
22. Facile synthesis of Raman active phospholipid gold nanoparticles. Tam NC; Scott BM; Voicu D; Wilson BC; Zheng G Bioconjug Chem; 2010 Dec; 21(12):2178-82. PubMed ID: 21090645 [TBL] [Abstract][Full Text] [Related]
23. Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer. Zhao L; Kim TH; Kim HW; Ahn JC; Kim SY Acta Biomater; 2015 Jul; 20():155-164. PubMed ID: 25848726 [TBL] [Abstract][Full Text] [Related]
24. Raman and SERS microscopy for molecular imaging of live cells. Palonpon AF; Ando J; Yamakoshi H; Dodo K; Sodeoka M; Kawata S; Fujita K Nat Protoc; 2013 Apr; 8(4):677-92. PubMed ID: 23471112 [TBL] [Abstract][Full Text] [Related]
25. Quantitative Drug Dynamics Visualized by Alkyne-Tagged Plasmonic-Enhanced Raman Microscopy. Koike K; Bando K; Ando J; Yamakoshi H; Terayama N; Dodo K; Smith NI; Sodeoka M; Fujita K ACS Nano; 2020 Nov; 14(11):15032-15041. PubMed ID: 33079538 [TBL] [Abstract][Full Text] [Related]
26. Monodisperse Au@Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells. Chang J; Zhang A; Huang Z; Chen Y; Zhang Q; Cui D Talanta; 2019 Jun; 198():45-54. PubMed ID: 30876586 [TBL] [Abstract][Full Text] [Related]
27. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars. Zhang Q; Large N; Wang H ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940 [TBL] [Abstract][Full Text] [Related]
28. Graphene Oxide as a Multifunctional Platform for Raman and Fluorescence Imaging of Cells. Zhang Z; Liu Q; Gao D; Luo D; Niu Y; Yang J; Li Y Small; 2015 Jul; 11(25):3000-5. PubMed ID: 25708171 [TBL] [Abstract][Full Text] [Related]
29. SERS-encoded nanogapped plasmonic nanoparticles: growth of metallic nanoshell by templating redox-active polymer brushes. Song J; Duan B; Wang C; Zhou J; Pu L; Fang Z; Wang P; Lim TT; Duan H J Am Chem Soc; 2014 May; 136(19):6838-41. PubMed ID: 24773367 [TBL] [Abstract][Full Text] [Related]
30. Facile synthesis of terminal-alkyne bioorthogonal molecules for live -cell surface-enhanced Raman scattering imaging through Au-core and silver/dopamine-shell nanotags. Chen M; Zhang L; Yang B; Gao M; Zhang X Anal Bioanal Chem; 2018 Mar; 410(8):2203-2210. PubMed ID: 29396584 [TBL] [Abstract][Full Text] [Related]
31. Polarization-based super-resolution imaging of surface-enhanced Raman scattering nanoparticles with orientational information. Wang M; Chen M; Zhanghao K; Zhang X; Jing Z; Gao J; Zhang MQ; Jin D; Dai Z; Xi P; Dai Q Nanoscale; 2018 Nov; 10(42):19757-19765. PubMed ID: 30211422 [TBL] [Abstract][Full Text] [Related]
33. Rapid immuno-SERS microscopy for tissue imaging with single-nanoparticle sensitivity. Salehi M; Steinigeweg D; Ströbel P; Marx A; Packeisen J; Schlücker S J Biophotonics; 2013 Oct; 6(10):785-92. PubMed ID: 23225645 [TBL] [Abstract][Full Text] [Related]
34. High-sensitive bioorthogonal SERS tag for live cancer cell imaging by self-assembling core-satellites structure gold-silver nanocomposite. Chen M; Zhang L; Gao M; Zhang X Talanta; 2017 Sep; 172():176-181. PubMed ID: 28602292 [TBL] [Abstract][Full Text] [Related]
35. Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation. Feng S; Lin J; Cheng M; Li YZ; Chen G; Huang Z; Yu Y; Chen R; Zeng H Appl Spectrosc; 2009 Oct; 63(10):1089-94. PubMed ID: 19843357 [TBL] [Abstract][Full Text] [Related]
36. Widefield SERS for High-Throughput Nanoparticle Screening. Liebel M; Calderon I; Pazos-Perez N; van Hulst NF; Alvarez-Puebla RA Angew Chem Int Ed Engl; 2022 May; 61(20):e202200072. PubMed ID: 35107845 [TBL] [Abstract][Full Text] [Related]
37. Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy. McMahon JM; Henry AI; Wustholz KL; Natan MJ; Freeman RG; Van Duyne RP; Schatz GC Anal Bioanal Chem; 2009 Aug; 394(7):1819-25. PubMed ID: 19305981 [TBL] [Abstract][Full Text] [Related]
38. SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor. David C; Guillot N; Shen H; Toury T; de la Chapelle ML Nanotechnology; 2010 Nov; 21(47):475501. PubMed ID: 21030778 [TBL] [Abstract][Full Text] [Related]
39. A new protein A assay based on Raman reporter labeled immunogold nanoparticles. Lin CC; Yang YM; Chen YF; Yang TS; Chang HC Biosens Bioelectron; 2008 Oct; 24(2):178-83. PubMed ID: 18468881 [TBL] [Abstract][Full Text] [Related]
40. Multiplexing with SERS labels using mixed SAMs of Raman reporter molecules. Gellner M; Kömpe K; Schlücker S Anal Bioanal Chem; 2009 Aug; 394(7):1839-44. PubMed ID: 19543719 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]