BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 2564683)

  • 21. Physiological and histochemical characteristics of motor units in cat tibialis anterior and extensor digitorum longus muscles.
    Dum RP; Kennedy TT
    J Neurophysiol; 1980 Jun; 43(6):1615-30. PubMed ID: 6447772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histochemical differentiation of extrafusal muscle fibres of the anterior latissimus dorsi in the chick.
    Toutant JP; Toutant MN; Renaud D; Le Douarin GH
    Cell Differ; 1980 Dec; 9(6):305-14. PubMed ID: 6449292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptations in the temporalis muscles of rabbits after masseter muscle removal.
    Guelinckx P; Dechow PC; Vanrusselt R; Carlson DS
    J Dent Res; 1986 Nov; 65(11):1294-9. PubMed ID: 2959691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chronic stimulation of mammalian muscle: enzyme changes in individual fibers.
    Chi MM; Hintz CS; Henriksson J; Salmons S; Hellendahl RP; Park JL; Nemeth PM; Lowry OH
    Am J Physiol; 1986 Oct; 251(4 Pt 1):C633-42. PubMed ID: 3020991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptation of rat extensor digitorum longus to overload and increased activity.
    Frischknecht R; Vrbová G
    Pflugers Arch; 1991 Oct; 419(3-4):319-26. PubMed ID: 1745607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coexistence of twitch potentiation and tetanic force decline in rat hindlimb muscle.
    Rankin LL; Enoka RM; Volz KA; Stuart DG
    J Appl Physiol (1985); 1988 Dec; 65(6):2687-95. PubMed ID: 3215868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationships between early alterations in parvalbumins, sarcoplasmic reticulum and metabolic enzymes in chronically stimulated fast twitch muscle.
    Klug G; Wiehrer W; Reichmann H; Leberer E; Pette D
    Pflugers Arch; 1983 Dec; 399(4):280-4. PubMed ID: 6229711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Induction of neuronal type nitric oxide synthase in skeletal muscle by chronic electrical stimulation in vivo.
    Reiser PJ; Kline WO; Vaghy PL
    J Appl Physiol (1985); 1997 Apr; 82(4):1250-5. PubMed ID: 9104863
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activities of malate dehydrogenase, 3-hydroxyacyl-CoA dehydrogenase and fructose-1,6-diphosphatase with regard to metabolic subpopulations of fast- and slow-twitch fibres in rabbit muscles.
    Spamer C; Pette D
    Histochemistry; 1979 Feb; 60(1):9-19. PubMed ID: 218915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzyme activities in single electrophysiologically identified crab muscle fibres.
    Maier L; Pette D; Rathmayer W
    J Physiol; 1986 Feb; 371():191-9. PubMed ID: 3701650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of different patterns of muscle activity on capillary density, mechanical properties and structure of slow and fast rabbit muscles.
    Brown MD; Cotter MA; Hudlická O; Vrbová G
    Pflugers Arch; 1976 Feb; 361(3):241-50. PubMed ID: 943767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature effects on isometric contractions of slow and fast twitch muscles of various rodents--dependence on fibre type composition: a comparative study.
    Asmussen G; Gaunitz U
    Biomed Biochim Acta; 1989; 48(5-6):S536-41. PubMed ID: 2757627
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human skeletal muscle adaptation in response to chronic low-frequency electrical stimulation.
    Thériault R; Thériault G; Simoneau JA
    J Appl Physiol (1985); 1994 Oct; 77(4):1885-9. PubMed ID: 7836213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of short-term, high intensity (sprint) training on some contractile and metabolic characteristics of fast and slow muscle of the rat.
    Staudte HW; Exner GU; Pette D
    Pflugers Arch; 1973 Nov; 344(2):159-68. PubMed ID: 4797950
    [No Abstract]   [Full Text] [Related]  

  • 35. Motor units and histochemistry in rat lateral gastrocnemius and soleus muscles: evidence for dissociation of physiological and histochemical properties after reinnervation.
    Gillespie MJ; Gordon T; Murphy PR
    J Neurophysiol; 1987 Apr; 57(4):921-37. PubMed ID: 2953872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chronic stimulation of rat skeletal muscle induces coordinate increases in mitochondrial and nuclear mRNAs of cytochrome-c-oxidase subunits.
    Hood DA; Zak R; Pette D
    Eur J Biochem; 1989 Feb; 179(2):275-80. PubMed ID: 2537205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identical responses of fast muscle to sustained activity by low-frequency stimulation in young and aging rats.
    Skorjanc D; Traub I; Pette D
    J Appl Physiol (1985); 1998 Aug; 85(2):437-41. PubMed ID: 9688717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrastructural aspects of the transformation of muscle fibre type by long term stimulation: changes in Z discs and mitochondria.
    Salmons S; Gale DR; Sréter FA
    J Anat; 1978 Sep; 127(Pt 1):17-31. PubMed ID: 151671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response of succinate dehydrogenase activity in fibres of rabbit tibialis anterior muscle to chronic nerve stimulation.
    Pette D; Tyler KR
    J Physiol; 1983 May; 338():1-9. PubMed ID: 6224003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical stimulation of denervated muscle prevents decreases in oxidative enzymes.
    Nemeth PM
    Muscle Nerve; 1982 Feb; 5(2):134-9. PubMed ID: 6280041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.