These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25647413)

  • 1. Optimization of influential nutrients during direct cellulose fermentation into hydrogen by Clostridium thermocellum.
    Islam R; Sparling R; Cicek N; Levin DB
    Int J Mol Sci; 2015 Jan; 16(2):3116-32. PubMed ID: 25647413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous hydrogen production during fermentation of alpha-cellulose by the thermophillic bacterium Clostridium thermocellum.
    Magnusson L; Cicek N; Sparling R; Levin D
    Biotechnol Bioeng; 2009 Feb; 102(3):759-66. PubMed ID: 18828175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405.
    Islam R; Cicek N; Sparling R; Levin D
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):141-8. PubMed ID: 18998122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405.
    Islam R; Cicek N; Sparling R; Levin D
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):576-83. PubMed ID: 16685495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation.
    Niessen J; Schröder U; Harnisch F; Scholz F
    Lett Appl Microbiol; 2005; 41(3):286-90. PubMed ID: 16108922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced biohydrogen production from sugarcane bagasse by Clostridium thermocellum supplemented with CaCO3.
    Tian QQ; Liang L; Zhu MJ
    Bioresour Technol; 2015 Dec; 197():422-8. PubMed ID: 26356113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media.
    Kridelbaugh DM; Nelson J; Engle NL; Tschaplinski TJ; Graham DE
    Bioresour Technol; 2013 Feb; 130():125-35. PubMed ID: 23306120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of ethanol from cellulosic biomass by Clostridium thermocellum SS19 in submerged fermentation: screening of nutrients using Plackett-Burman design.
    Balusu R; Paduru RM; Seenayya G; Reddy G
    Appl Biochem Biotechnol; 2004 Jun; 117(3):133-41. PubMed ID: 15304765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributing factors in the improvement of cellulosic H2 production in Clostridium thermocellum/Thermoanaerobacterium co-cultures.
    Wang M; Zhao Q; Li L; Niu K; Li Y; Wang F; Jiang B; Liu K; Jiang Y; Fang X
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8607-20. PubMed ID: 27538932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆.
    Singh N; Mathur AS; Gupta RP; Barrow CJ; Tuli D; Puri M
    Bioresour Technol; 2018 Feb; 250():860-867. PubMed ID: 30001594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.
    Papanek B; Biswas R; Rydzak T; Guss AM
    Metab Eng; 2015 Nov; 32():49-54. PubMed ID: 26369438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Fermentative Hydrogen Production from Cellulose and Starch with Mesophilic Bacterial Consortia.
    Zagrodnik R; Seifert K
    Pol J Microbiol; 2020 Sep; 69(1):109-120. PubMed ID: 32189481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic control of Clostridium thermocellum via inhibition of hydrogenase activity and the glucose transport rate.
    Li HF; Knutson BL; Nokes SE; Lynn BC; Flythe MD
    Appl Microbiol Biotechnol; 2012 Feb; 93(4):1777-84. PubMed ID: 22218768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Enhanced role of the co-culture of thermophilic anaerobic bacteria on cellulosic ethanol].
    Fang ZG
    Huan Jing Ke Xue; 2010 Apr; 31(4):1059-65. PubMed ID: 20527192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous cellulosic bioethanol fermentation by cyclic fed-batch cocultivation.
    Jiang HL; He Q; He Z; Hemme CL; Wu L; Zhou J
    Appl Environ Microbiol; 2013 Mar; 79(5):1580-9. PubMed ID: 23275517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Cellulose hydrolysis and ethanol production by a facultative anaerobe bacteria consortium H and its identification].
    Du R; Li S; Zhang X; Wang L
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):960-5. PubMed ID: 20954397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing alternative kinetic models for utilization of crystalline cellulose (Avicel) by batch cultures of Clostridium thermocellum.
    Holwerda EK; Lynd LR
    Biotechnol Bioeng; 2013 Sep; 110(9):2389-94. PubMed ID: 23568291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO2-fixing one-carbon metabolism in a cellulose-degrading bacterium Clostridium thermocellum.
    Xiong W; Lin PP; Magnusson L; Warner L; Liao JC; Maness PC; Chou KJ
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):13180-13185. PubMed ID: 27794122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the metabolic inhibition observed in solid-substrate cultivation of Clostridium thermocellum on cellulose.
    Dharmagadda VS; Nokes SE; Strobel HJ; Flythe MD
    Bioresour Technol; 2010 Aug; 101(15):6039-44. PubMed ID: 20362436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum.
    Weimer PJ; Zeikus JG
    Appl Environ Microbiol; 1977 Feb; 33(2):289-97. PubMed ID: 848953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.