BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25647490)

  • 21. Oxytetracycline interactions at the soil-water interface: effects of environmental surfaces on natural transformation and growth inhibition of Azotobacter vinelandii.
    Goetsch HE; Mylon SE; Butler S; Zilles JL; Nguyen TH
    Environ Toxicol Chem; 2012 Oct; 31(10):2217-24. PubMed ID: 22821843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characteristics of oxytetracycline sorption and potential bioavailability in soils with various physical-chemical properties.
    Kong W; Li C; Dolhi JM; Li S; He J; Qiao M
    Chemosphere; 2012 Apr; 87(5):542-8. PubMed ID: 22245075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sorption of tetracycline, oxytetracycline and tylosin to eight surface sediments of Taihu Lake.
    Ji L; Bai Z; Deng L; Ashraf MA
    J Environ Biol; 2016 Sep; 37(5 Spec No):1087-1095. PubMed ID: 29989740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphate affects adsorption and desorption of oxytetracycline in the seawater-sediment systems.
    Li J; Zhang H; Yuan G
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28160-28168. PubMed ID: 30073592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Iron humate as a low-cost sorbent for metal ions.
    Janos P; Fedorovic J; Stanková P; Grötschelová S; Rejnek J; Stopka P
    Environ Technol; 2006 Feb; 27(2):169-81. PubMed ID: 16506513
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Innovative approach for recycling phosphorous from agro-wastewaters using water treatment residuals (WTR).
    Zohar I; Ippolito JA; Massey MS; Litaor IM
    Chemosphere; 2017 Feb; 168():234-243. PubMed ID: 27788362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphorus Sorption Characteristics in Aluminum-based Water Treatment Residuals Reacted with Dairy Wastewater: 1. Isotherms, XRD, and SEM-EDS Analysis.
    Zohar I; Massey MS; Ippolito JA; Litaor MI
    J Environ Qual; 2018 May; 47(3):538-545. PubMed ID: 29864177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. X-ray absorption spectroscopy as a tool investigating arsenic(III) and arsenic(V) sorption by an aluminum-based drinking-water treatment residual.
    Makris KC; Sarkar D; Parsons JG; Datta R; Gardea-Torresdey JL
    J Hazard Mater; 2009 Nov; 171(1-3):980-6. PubMed ID: 19631458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-term effects of drinking-water treatment residuals on dissolved phosphorus export from vegetated buffer strips.
    Habibiandehkordi R; Quinton JN; Surridge BW
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6068-76. PubMed ID: 25388559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The removal of tetracycline, oxytetracycline, and chlortetracycline by manganese oxide-doped copper oxide: the behaviors and insights of Cu-Mn combination for enhancing antibiotics removal.
    Wu K; Zhang C; Liu T; Lei H; Yang S; Jin P
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12613-12623. PubMed ID: 32006329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Enhanced sorption of OTC on clays via complexation with Zn2+].
    Han CW; Qiao XL; Chen JW; Cai XY
    Huan Jing Ke Xue; 2009 Aug; 30(8):2408-13. PubMed ID: 19799309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An anaerobic incubation study of metal lability in drinking water treatment residue with implications for practical reuse.
    Wang C; Yuan N; Pei Y
    J Hazard Mater; 2014 Jun; 274():342-8. PubMed ID: 24813662
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption and transformation of tetracyclines on alpha alumina particles with surface modification by anionic surfactant.
    Yen Doan TH; Hoang TH; Le VA; Vu DN; Vu TN; Srivastav AL; Pham TD
    Environ Res; 2023 Jan; 216(Pt 2):114618. PubMed ID: 36279908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry.
    Miyata M; Ihara I; Yoshid G; Toyod K; Umetsu K
    Water Sci Technol; 2011; 63(3):456-61. PubMed ID: 21278467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selenium adsorption to aluminum-based water treatment residuals.
    Ippolito JA; Scheckel KG; Barbarick KA
    J Colloid Interface Sci; 2009 Oct; 338(1):48-55. PubMed ID: 19589535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sorption of tetracyclines onto natural soils: data analysis and prediction.
    Teixidó M; Granados M; Prat MD; Beltrán JL
    Environ Sci Pollut Res Int; 2012 Sep; 19(8):3087-95. PubMed ID: 22875420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Halloysite nanoclay supported adsorptive removal of oxytetracycline antibiotic from aqueous media.
    Ramanayaka S; Sarkar B; Cooray AT; Ok YS; Vithanage M
    J Hazard Mater; 2020 Feb; 384():121301. PubMed ID: 31600698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing soluble phosphorus removal within buffer strips using industrial by-products.
    Habibiandehkordi R; Quinton JN; Surridge BW
    Environ Sci Pollut Res Int; 2014 Nov; 21(21):12257-69. PubMed ID: 24928382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254nm activation of persulfate.
    Liu Y; He X; Fu Y; Dionysiou DD
    J Hazard Mater; 2016 Mar; 305():229-239. PubMed ID: 26686482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption of tetracyclines onto polyethylene microplastics: A combined study of experiment and molecular dynamics simulation.
    Chen Y; Li J; Wang F; Yang H; Liu L
    Chemosphere; 2021 Feb; 265():129133. PubMed ID: 33276997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.