These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 25647519)
1. Prediction of pork quality at the slaughter line using a portable Raman device. Scheier R; Scheeder M; Schmidt H Meat Sci; 2015 May; 103():96-103. PubMed ID: 25647519 [TBL] [Abstract][Full Text] [Related]
2. Predicting post-mortem meat quality in porcine longissimus lumborum using Raman, near infrared and fluorescence spectroscopy. Andersen PV; Wold JP; Gjerlaug-Enger E; Veiseth-Kent E Meat Sci; 2018 Nov; 145():94-100. PubMed ID: 29940404 [TBL] [Abstract][Full Text] [Related]
3. Predicting meat quality traits of ovine m. semimembranosus, both fresh and following freezing and thawing, using a hand held Raman spectroscopic device. Fowler SM; Schmidt H; van de Ven R; Wynn P; Hopkins DL Meat Sci; 2015 Oct; 108():138-44. PubMed ID: 26115347 [TBL] [Abstract][Full Text] [Related]
5. Pre-slaughter handling and pork quality. Vermeulen L; Van de Perre V; Permentier L; De Bie S; Verbeke G; Geers R Meat Sci; 2015 Feb; 100():118-23. PubMed ID: 25460114 [TBL] [Abstract][Full Text] [Related]
6. Moisture absorption early postmortem predicts ultimate drip loss in fresh pork. Kapper C; Walukonis CJ; Scheffler TL; Scheffler JM; Don C; Morgan MT; Forrest JC; Gerrard DE Meat Sci; 2014 Feb; 96(2 Pt A):971-6. PubMed ID: 24225387 [TBL] [Abstract][Full Text] [Related]
7. Prediction of water holding capacity and pH in porcine longissimus lumborum using Raman spectroscopy. Andersen PV; Afseth NK; Gjerlaug-Enger E; Wold JP Meat Sci; 2021 Feb; 172():108357. PubMed ID: 33130356 [TBL] [Abstract][Full Text] [Related]
8. Predicting tenderness of fresh ovine semimembranosus using Raman spectroscopy. Fowler SM; Schmidt H; van de Ven R; Wynn P; Hopkins DL Meat Sci; 2014 Aug; 97(4):597-601. PubMed ID: 24785653 [TBL] [Abstract][Full Text] [Related]
9. Assessment of tenderness of aged bovine gluteus medius muscles using Raman spectroscopy. Bauer A; Scheier R; Eberle T; Schmidt H Meat Sci; 2016 May; 115():27-33. PubMed ID: 26802613 [TBL] [Abstract][Full Text] [Related]
10. Prediction of meat quality traits in the abattoir using portable and hand-held near-infrared spectrometers. Savoia S; Albera A; Brugiapaglia A; Di Stasio L; Ferragina A; Cecchinato A; Bittante G Meat Sci; 2020 Mar; 161():108017. PubMed ID: 31884162 [TBL] [Abstract][Full Text] [Related]
11. Use of infrared ocular thermography to assess physiological conditions of pigs prior to slaughter and predict pork quality variation. Weschenfelder AV; Saucier L; Maldague X; Rocha LM; Schaefer AL; Faucitano L Meat Sci; 2013 Nov; 95(3):616-20. PubMed ID: 23806854 [TBL] [Abstract][Full Text] [Related]
12. [Studies on muscle-meat quality in swine. 1. Incidence of poor quality as well as influence of slaughtering and refrigeration]. Prange H; Jugert L; Scharner E Arch Exp Veterinarmed; 1977; 31(2):235-48. PubMed ID: 901128 [TBL] [Abstract][Full Text] [Related]
13. Preliminary investigation of the use of Raman spectroscopy to predict meat and eating quality traits of beef loins. Fowler SM; Schmidt H; van de Ven R; Hopkins DL Meat Sci; 2018 Apr; 138():53-58. PubMed ID: 29331862 [TBL] [Abstract][Full Text] [Related]
14. The prevalence of PSE characteristics in pork and cooked ham--effects of season and lairage time. Van de Perre V; Ceustermans A; Leyten J; Geers R Meat Sci; 2010 Oct; 86(2):391-7. PubMed ID: 20554397 [TBL] [Abstract][Full Text] [Related]
15. Different Statistical Approaches to Investigate Porcine Muscle Metabolome Profiles to Highlight New Biomarkers for Pork Quality Assessment. Welzenbach J; Neuhoff C; Looft C; Schellander K; Tholen E; Große-Brinkhaus C PLoS One; 2016; 11(2):e0149758. PubMed ID: 26919205 [TBL] [Abstract][Full Text] [Related]
16. Assessment of physico-chemical traits related to eating quality of young dairy bull beef at different ageing times using Raman spectroscopy and chemometrics. Nian Y; Zhao M; O'Donnell CP; Downey G; Kerry JP; Allen P Food Res Int; 2017 Sep; 99(Pt 1):778-789. PubMed ID: 28784544 [TBL] [Abstract][Full Text] [Related]
17. Prediction of Warner-Bratzler shear force, intramuscular fat, drip-loss and cook-loss in beef via Raman spectroscopy and chemometrics. Cama-Moncunill R; Cafferky J; Augier C; Sweeney T; Allen P; Ferragina A; Sullivan C; Cromie A; Hamill RM Meat Sci; 2020 Sep; 167():108157. PubMed ID: 32361332 [TBL] [Abstract][Full Text] [Related]
18. Predicting pork quality using Vis/NIR spectroscopy. Balage JM; da Luz E Silva S; Gomide CA; Bonin Mde N; Figueira AC Meat Sci; 2015 Oct; 108():37-43. PubMed ID: 26021598 [TBL] [Abstract][Full Text] [Related]
19. Modelling lamb carcase pH and temperature decline parameters: relationship to shear force and abattoir variation. Hopkins DL; Holman BW; van de Ven RJ Meat Sci; 2015 Feb; 100():85-90. PubMed ID: 25460110 [TBL] [Abstract][Full Text] [Related]
20. Evaluating low- mid- and high-level fusion strategies for combining Raman and infrared spectroscopy for quality assessment of red meat. Robert C; Jessep W; Sutton JJ; Hicks TM; Loeffen M; Farouk M; Ward JF; Bain WE; Craigie CR; Fraser-Miller SJ; Gordon KC Food Chem; 2021 Nov; 361():130154. PubMed ID: 34077882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]