These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 25648336)

  • 1. Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution.
    Briggs K; Charron M; Kwok H; Le T; Chahal S; Bustamante J; Waugh M; Tabard-Cossa V
    Nanotechnology; 2015 Feb; 26(8):084004. PubMed ID: 25648336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanopore fabrication by controlled dielectric breakdown.
    Kwok H; Briggs K; Tabard-Cossa V
    PLoS One; 2014; 9(3):e92880. PubMed ID: 24658537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High fidelity moving Z-score based controlled breakdown fabrication of solid-state nanopore.
    Roshan KA; Tang Z; Guan W
    Nanotechnology; 2019 Mar; 30(9):095502. PubMed ID: 30523901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On Stochastic Reduction in Laser-Assisted Dielectric Breakdown for Programmable Nanopore Fabrication.
    Tang Z; Dong M; He X; Guan W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13383-13391. PubMed ID: 33705089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis.
    Briggs K; Kwok H; Tabard-Cossa V
    Small; 2014 May; 10(10):2077-86. PubMed ID: 24585682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-state nanopore fabrication by automated controlled breakdown.
    Waugh M; Briggs K; Gunn D; Gibeault M; King S; Ingram Q; Jimenez AM; Berryman S; Lomovtsev D; Andrzejewski L; Tabard-Cossa V
    Nat Protoc; 2020 Jan; 15(1):122-143. PubMed ID: 31836867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown.
    Tahvildari R; Beamish E; Tabard-Cossa V; Godin M
    Lab Chip; 2015 Mar; 15(6):1407-11. PubMed ID: 25631885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-state nanopore fabrication in LiCl by controlled dielectric breakdown.
    Bello J; Shim J
    Biomed Microdevices; 2018 Apr; 20(2):38. PubMed ID: 29680876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-Time Profiling of Solid-State Nanopores During Solution-Phase Nanofabrication.
    Bandara YM; Karawdeniya BI; Dwyer JR
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30583-30589. PubMed ID: 27709879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localized Nanopore Fabrication via Controlled Breakdown.
    Ying C; Ma T; Xu L; Rahmani M
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of multiple nanopores in a SiN
    Wang Y; Ying C; Zhou W; de Vreede L; Liu Z; Tian J
    Sci Rep; 2018 Jan; 8(1):1234. PubMed ID: 29352158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules.
    Yanagi I; Akahori R; Takeda KI
    Sci Rep; 2019 Sep; 9(1):13143. PubMed ID: 31511597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of Single Nanopores with Diameters of 20-50 nm in Silicon Nitride Membranes Using Laser-Assisted Controlled Breakdown.
    Ying C; Houghtaling J; Eggenberger OM; Guha A; Nirmalraj P; Awasthi S; Tian J; Mayer M
    ACS Nano; 2018 Nov; 12(11):11458-11470. PubMed ID: 30335956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state nanopore localization by controlled breakdown of selectively thinned membranes.
    Carlsen AT; Briggs K; Hall AR; Tabard-Cossa V
    Nanotechnology; 2017 Feb; 28(8):085304-85304. PubMed ID: 28045003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductance-based profiling of nanopores: Accommodating fabrication irregularities.
    Bandara YMNDY; Nichols JW; Iroshika Karawdeniya B; Dwyer JR
    Electrophoresis; 2018 Feb; 39(4):626-634. PubMed ID: 29131359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-step breakdown of a SiN membrane for nanopore fabrication: Formation of thin portion and penetration.
    Yanagi I; Hamamura H; Akahori R; Takeda KI
    Sci Rep; 2018 Jul; 8(1):10129. PubMed ID: 29973672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple Fabrication of Solid-State Nanopores on a Carbon Film.
    Takai N; Shoji K; Maki T; Kawano R
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.