These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 25648386)

  • 1. On the relationship between negative affective priming and prefrontal cognitive control mechanisms.
    Falquez R; Lang S; Dinu-Biringer R; Nees F; Arens E; Kotchoubey B; Berger M; Barnow S
    Cogn Emot; 2016; 30(2):225-44. PubMed ID: 25648386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of selective attention in the positivity offset: Evidence from event related potentials.
    Booy RM; Carolan PL
    PLoS One; 2021; 16(11):e0258640. PubMed ID: 34731204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural activities for negative priming with affective stimuli: an fMRI study.
    Leung KK; Lee TM; Xiao Z; Wang Z; Zhang JX; Yip PS; Li LS
    Neurosci Lett; 2008 Mar; 433(3):194-8. PubMed ID: 18281155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In and out of control: brain mechanisms linking fluency of action selection to self-agency in patients with schizophrenia.
    Voss M; Chambon V; Wenke D; Kühn S; Haggard P
    Brain; 2017 Aug; 140(8):2226-2239. PubMed ID: 28899009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the subliminal affective priming effect of facial stimuli: an ERP study.
    Lu Y; Zhang WN; Hu W; Luo YJ
    Neurosci Lett; 2011 Sep; 502(3):182-5. PubMed ID: 21827830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of emotional associations on the neural correlates of semantic priming.
    Sass K; Habel U; Sachs O; Huber W; Gauggel S; Kircher T
    Hum Brain Mapp; 2012 Mar; 33(3):676-94. PubMed ID: 21520342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rostro-caudal and dorso-ventral gradients in medial and lateral prefrontal cortex during cognitive control of affective and cognitive interference.
    Rahm C; Liberg B; Wiberg-Kristoffersen M; Aspelin P; Msghina M
    Scand J Psychol; 2013 Apr; 54(2):66-71. PubMed ID: 23316801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negative priming: a meta-analysis of fMRI studies.
    Yaple Z; Arsalidou M
    Exp Brain Res; 2017 Nov; 235(11):3367-3374. PubMed ID: 28821983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Who comes first? The role of the prefrontal and parietal cortex in cognitive control.
    Brass M; Ullsperger M; Knoesche TR; von Cramon DY; Phillips NA
    J Cogn Neurosci; 2005 Sep; 17(9):1367-75. PubMed ID: 16197690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Affective priming and cognitive load: Event-related potentials suggest an interplay of implicit affect misattribution and strategic inhibition.
    Gibbons H; Seib-Pfeifer LE; Koppehele-Gossel J; Schnuerch R
    Psychophysiology; 2018 Apr; 55(4):. PubMed ID: 28940207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of the concreteness of differently valenced words on affective priming.
    Yao Z; Wang Z
    Acta Psychol (Amst); 2013 Jul; 143(3):269-76. PubMed ID: 23684852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How negative affect influences neural control processes underlying the resolution of cognitive interference: an event-related fMRI study.
    Melcher T; Born C; Gruber O
    Neurosci Res; 2011 Aug; 70(4):415-27. PubMed ID: 21620907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The rostral prefrontal cortex underlies individual differences in working memory capacity: An approach from the hierarchical model of the cognitive control.
    Minamoto T; Yaoi K; Osaka M; Osaka N
    Cortex; 2015 Oct; 71():277-90. PubMed ID: 26280275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consecutive repetition effects for affective-distractor pictures in a visual oddball task: electrophysiological evidence from an ERP study.
    Jiang D; Zheng X; Li F
    Brain Res; 2013 Jun; 1517():68-76. PubMed ID: 23628477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociating cognitive from affective theory of mind: a TMS study.
    Kalbe E; Schlegel M; Sack AT; Nowak DA; Dafotakis M; Bangard C; Brand M; Shamay-Tsoory S; Onur OA; Kessler J
    Cortex; 2010 Jun; 46(6):769-80. PubMed ID: 19709653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aversive distractors modulate affective working memory in frontoparietal regions.
    Stout DM; Bomyea J; Risbrough VB; Simmons AN
    Emotion; 2020 Mar; 20(2):286-295. PubMed ID: 30570314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain networks of affective mentalizing revealed by the tear effect: The integrative role of the medial prefrontal cortex and precuneus.
    Takahashi HK; Kitada R; Sasaki AT; Kawamichi H; Okazaki S; Kochiyama T; Sadato N
    Neurosci Res; 2015 Dec; 101():32-43. PubMed ID: 26197267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Timing of spatial priming within the fronto-parietal attention network: A TMS study.
    Kehrer S; Kraft A; Koch SP; Kathmann N; Irlbacher K; Brandt SA
    Neuropsychologia; 2015 Jul; 74():30-6. PubMed ID: 25448855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain regions underlying response inhibition and interference monitoring and suppression.
    Blasi G; Goldberg TE; Weickert T; Das S; Kohn P; Zoltick B; Bertolino A; Callicott JH; Weinberger DR; Mattay VS
    Eur J Neurosci; 2006 Mar; 23(6):1658-64. PubMed ID: 16553630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of subliminal affective priming on helping behavior using the foot-in-the-door technique.
    Skandrani-Marzouki I; Marzouki Y; Joule RV
    Psychol Rep; 2012 Dec; 111(3):669-86. PubMed ID: 23402037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.