These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 25648526)

  • 1. Undamped ultrafast pulsation of plasmonic fields via coherent exciton-plasmon coupling.
    Sadeghi SM; Wing WJ; Gutha RR
    Nanotechnology; 2015 Feb; 26(8):085202. PubMed ID: 25648526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.
    Sadeghi SM
    Opt Lett; 2014 Sep; 39(17):4986-9. PubMed ID: 25166055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent molecular resonances in quantum dot-metallic nanoparticle systems: coherent self-renormalization and structural effects.
    Hatef A; Sadeghi SM; Singh MR
    Nanotechnology; 2012 May; 23(20):205203. PubMed ID: 22543983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.
    Hatef A; Sadeghi SM; Fortin-Deschênes S; Boulais E; Meunier M
    Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems.
    Sadeghi SM; Deng L; Li X; Huang WP
    Nanotechnology; 2009 Sep; 20(36):365401. PubMed ID: 19687539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gain without inversion in hybrid quantum dot-metallic nanoparticle systems.
    Sadeghi SM
    Nanotechnology; 2010 Nov; 21(45):455401. PubMed ID: 20947944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum dot-metallic nanorod sensors via exciton-plasmon interaction.
    Hatef A; Sadeghi SM; Boulais É; Meunier M
    Nanotechnology; 2013 Jan; 24(1):015502. PubMed ID: 23220909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent confinement of plasmonic field in quantum dot-metallic nanoparticle molecules.
    Sadeghi SM; Hatef A; Fortin-Deschenes S; Meunier M
    Nanotechnology; 2013 May; 24(20):205201. PubMed ID: 23609222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot-metallic nanoparticle systems.
    Sadeghi SM
    Nanotechnology; 2009 Jun; 20(22):225401. PubMed ID: 19436085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses.
    Sadeghi SM; West RG
    J Phys Condens Matter; 2011 Oct; 23(42):425302. PubMed ID: 21969173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission.
    Wing WJ; Sadeghi SM; Gutha RR; Campbell Q; Mao C
    J Appl Phys; 2015 Sep; 118(12):124302. PubMed ID: 26442574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems.
    Hatef A; Sadeghi SM; Singh MR
    Nanotechnology; 2012 Feb; 23(6):065701. PubMed ID: 22248503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Investigation of Optical Detection and Recognition of Single Biological Molecules Using Coherent Dynamics of Exciton-Plasmon Coupling.
    Sadeghi SM; Hood B; Patty KD; Mao CB
    J Phys Chem C Nanomater Interfaces; 2013 Aug; 117(33):17344-17351. PubMed ID: 24040424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide.
    Kim NC; Ko MC; Choe SI; Hao ZH; Zhou L; Li JB; Im SJ; Ko YH; Jo CG; Wang QQ
    Nanotechnology; 2016 Nov; 27(46):465703. PubMed ID: 27749280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field.
    Kosionis SG; Terzis AF; Sadeghi SM; Paspalakis E
    J Phys Condens Matter; 2013 Jan; 25(4):045304. PubMed ID: 23257986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of the second-harmonic generation in a quantum dot-metallic nanoparticle hybrid system.
    Singh MR
    Nanotechnology; 2013 Mar; 24(12):125701. PubMed ID: 23459222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a hybrid metal/semiconductor nanostructure.
    Zhong JH; Vogelsang J; Yi JM; Wang D; Wittenbecher L; Mikaelsson S; Korte A; Chimeh A; Arnold CL; Schaaf P; Runge E; Huillier AL; Mikkelsen A; Lienau C
    Nat Commun; 2020 Mar; 11(1):1464. PubMed ID: 32193407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast optical switching in quantum dot-metallic nanoparticle hybrid systems.
    Yang WX; Chen AX; Huang Z; Lee RK
    Opt Express; 2015 May; 23(10):13032-40. PubMed ID: 26074556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Order-of-magnitude enhancement of intersubband photoresponse in a plasmonic quantum dot system.
    Shenoi RV; Lin SY; Krishna S; Huang D
    Opt Lett; 2014 Aug; 39(15):4454-7. PubMed ID: 25078201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.