These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25648563)

  • 21. Constructing an atomic-resolution model of human P2X7 receptor followed by pharmacophore modeling to identify potential inhibitors.
    Ahmadi M; Nowroozi A; Shahlaei M
    J Mol Graph Model; 2015 Sep; 61():243-61. PubMed ID: 26298810
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pharmacophore based drug design approach as a practical process in drug discovery.
    Gao Q; Yang L; Zhu Y
    Curr Comput Aided Drug Des; 2010 Mar; 6(1):37-49. PubMed ID: 20370694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. LiGRO: a graphical user interface for protein-ligand molecular dynamics.
    Kagami LP; das Neves GM; da Silva AWS; Caceres RA; Kawano DF; Eifler-Lima VL
    J Mol Model; 2017 Oct; 23(11):304. PubMed ID: 28980073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploration of the structural requirements of HIV-protease inhibitors using pharmacophore, virtual screening and molecular docking approaches for lead identification.
    Islam MA; Pillay TS
    J Mol Graph Model; 2015 Mar; 56():20-30. PubMed ID: 25541527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epidermal growth factor receptor (EGFR) structure-based bioactive pharmacophore models for identifying next-generation inhibitors against clinically relevant EGFR mutations.
    Panicker PS; Melge AR; Biswas L; Keechilat P; Mohan CG
    Chem Biol Drug Des; 2017 Oct; 90(4):629-636. PubMed ID: 28303669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction.
    Xu Y; Wang S; Hu Q; Gao S; Ma X; Zhang W; Shen Y; Chen F; Lai L; Pei J
    Nucleic Acids Res; 2018 Jul; 46(W1):W374-W379. PubMed ID: 29750256
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug design.
    Dror O; Shulman-Peleg A; Nussinov R; Wolfson HJ
    Curr Med Chem; 2004 Jan; 11(1):71-90. PubMed ID: 14754427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrating Pharmacophore into Membrane Molecular Dynamics Simulations to Improve Homology Modeling of G Protein-coupled Receptors with Ligand Selectivity: A2A Adenosine Receptor as an Example.
    Zeng L; Guan M; Jin H; Liu Z; Zhang L
    Chem Biol Drug Des; 2015 Dec; 86(6):1438-50. PubMed ID: 26072970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Receptor-based pharmacophore modeling, virtual screening, and molecular docking studies for the discovery of novel GSK-3β inhibitors.
    El Kerdawy AM; Osman AA; Zaater MA
    J Mol Model; 2019 May; 25(6):171. PubMed ID: 31129879
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pharmacophore-based virtual screening.
    Horvath D
    Methods Mol Biol; 2011; 672():261-98. PubMed ID: 20838973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An integrated suite of modeling tools that empower scientists in structure- and property-based drug design.
    Feng JA; Aliagas I; Bergeron P; Blaney JM; Bradley EK; Koehler MF; Lee ML; Ortwine DF; Tsui V; Wu J; Gobbi A
    J Comput Aided Mol Des; 2015 Jun; 29(6):511-23. PubMed ID: 25921252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategy of computer-aided drug design.
    Veselovsky AV; Ivanov AS
    Curr Drug Targets Infect Disord; 2003 Mar; 3(1):33-40. PubMed ID: 12570731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A web-based 3D-database pharmacophore searching tool for drug discovery.
    Fang X; Wang S
    J Chem Inf Comput Sci; 2002; 42(2):192-8. PubMed ID: 11911686
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current insights into computer-aided immunotherapeutic design strategies.
    Cai Z; Zhang G; Zhang X; Liu Y; Fu X
    Int J Immunopathol Pharmacol; 2015 Sep; 28(3):278-85. PubMed ID: 26091813
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pocket v.2: further developments on receptor-based pharmacophore modeling.
    Chen J; Lai L
    J Chem Inf Model; 2006; 46(6):2684-91. PubMed ID: 17125208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioportainer Workbench: a versatile and user-friendly system that integrates implementation, management, and use of bioinformatics resources in Docker environments.
    Menegidio FB; Aciole Barbosa D; Gonçalves RDS; Nishime MM; Jabes DL; Costa de Oliveira R; Nunes LR
    Gigascience; 2019 Apr; 8(4):. PubMed ID: 31222200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-throughput structure-based pharmacophore modelling as a basis for successful parallel virtual screening.
    Steindl TM; Schuster D; Wolber G; Laggner C; Langer T
    J Comput Aided Mol Des; 2006 Dec; 20(12):703-15. PubMed ID: 17009092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring the P2 and P3 ligand binding features for hepatitis C virus NS3 protease using some 3D QSAR techniques.
    Wei HY; Lu CS; Lin TH
    J Mol Graph Model; 2008 Apr; 26(7):1131-44. PubMed ID: 18024210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovery of Novel Glucagon Receptor Antagonists Using Combined Pharmacophore Modeling and Docking.
    Jafari F; Nowroozi A; Shahlaei M
    Iran J Pharm Res; 2018; 17(4):1263-1287. PubMed ID: 30568686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. WinDock: structure-based drug discovery on Windows-based PCs.
    Hu Z; Southerland W
    J Comput Chem; 2007 Nov; 28(14):2347-51. PubMed ID: 17476686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.