These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 25648647)
1. CO₂ and inorganic nutrient enrichment affect the performance of a calcifying green alga and its noncalcifying epiphyte. Hofmann LC; Bischof K; Baggini C; Johnson A; Koop-Jakobsen K; Teichberg M Oecologia; 2015 Apr; 177(4):1157-69. PubMed ID: 25648647 [TBL] [Abstract][Full Text] [Related]
2. Nutrient availability affects the response of the calcifying chlorophyte Halimeda opuntia (L.) J.V. Lamouroux to low pH. Hofmann LC; Heiden J; Bischof K; Teichberg M Planta; 2014 Jan; 239(1):231-42. PubMed ID: 24158465 [TBL] [Abstract][Full Text] [Related]
3. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC) availability. Meyer FW; Vogel N; Teichberg M; Uthicke S; Wild C PLoS One; 2015; 10(8):e0133596. PubMed ID: 26267650 [TBL] [Abstract][Full Text] [Related]
4. Effect of Inorganic and Organic Carbon Enrichments (DIC and DOC) on the Photosynthesis and Calcification Rates of Two Calcifying Green Algae from a Caribbean Reef Lagoon. Meyer FW; Schubert N; Diele K; Teichberg M; Wild C; Enríquez S PLoS One; 2016; 11(8):e0160268. PubMed ID: 27487195 [TBL] [Abstract][Full Text] [Related]
5. Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Gordillo FJ; Niell FX; Figueroa FL Planta; 2001 May; 213(1):64-70. PubMed ID: 11523657 [TBL] [Abstract][Full Text] [Related]
7. Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis. Hofmann LC; Straub S; Bischof K J Exp Bot; 2013 Feb; 64(4):899-908. PubMed ID: 23314813 [TBL] [Abstract][Full Text] [Related]
8. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species. Ow YX; Vogel N; Collier CJ; Holtum JA; Flores F; Uthicke S Sci Rep; 2016 Mar; 6():23093. PubMed ID: 26976685 [TBL] [Abstract][Full Text] [Related]
9. Growth and Nutrient Utilization of Green Algae in Batch and Semicontinuous Autotrophic Cultivation Under High CO Liu S; Elvira P; Wang Y; Wang W Appl Biochem Biotechnol; 2019 Jul; 188(3):836-853. PubMed ID: 30707345 [TBL] [Abstract][Full Text] [Related]
10. High nutrient availability modulates photosynthetic performance and biochemical components of the economically important marine macroalga Kappaphycus alvarezii (Rhodophyta) in response to ocean acidification. Long C; Zhang Y; Wei Z; Long L Mar Environ Res; 2024 Feb; 194():106339. PubMed ID: 38182500 [TBL] [Abstract][Full Text] [Related]
11. Nutrient removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment. Xu J; Zhao Y; Zhao G; Zhang H Appl Microbiol Biotechnol; 2015 Aug; 99(15):6493-501. PubMed ID: 25808519 [TBL] [Abstract][Full Text] [Related]
12. CO₂ alters community composition and response to nutrient enrichment of freshwater phytoplankton. Low-Décarie E; Bell G; Fussmann GF Oecologia; 2015 Mar; 177(3):875-883. PubMed ID: 25430043 [TBL] [Abstract][Full Text] [Related]
13. Difference in physiological responses of growth, photosynthesis and calcification of the coccolithophore Emiliania huxleyi to acidification by acid and CO2 enrichment. Fukuda SY; Suzuki Y; Shiraiwa Y Photosynth Res; 2014 Sep; 121(2-3):299-309. PubMed ID: 24500605 [TBL] [Abstract][Full Text] [Related]
14. Algae mediate submerged macrophyte response to nutrient and dissolved inorganic carbon loading: a mesocosm study on different species. Xie D; Yu D; You WH; Wang LG Chemosphere; 2013 Oct; 93(7):1301-8. PubMed ID: 23958444 [TBL] [Abstract][Full Text] [Related]
15. Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Larmola T; Bubier JL; Kobyljanec C; Basiliko N; Juutinen S; Humphreys E; Preston M; Moore TR Glob Chang Biol; 2013 Dec; 19(12):3729-39. PubMed ID: 23868415 [TBL] [Abstract][Full Text] [Related]
16. Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Reymond CE; Lloyd A; Kline DI; Dove SG; Pandolfi JM Glob Chang Biol; 2013 Jan; 19(1):291-302. PubMed ID: 23504740 [TBL] [Abstract][Full Text] [Related]
17. Nutrient enrichment coupled with sedimentation favors sea anemones over corals. Liu PJ; Hsin MC; Huang YH; Fan TY; Meng PJ; Lu CC; Lin HJ PLoS One; 2015; 10(4):e0125175. PubMed ID: 25897844 [TBL] [Abstract][Full Text] [Related]
18. Nutrient limitation of algae and macrophytes in streams: Integrating laboratory bioassays, field experiments, and field data. Mebane CA; Ray AM; Marcarelli AM PLoS One; 2021; 16(6):e0252904. PubMed ID: 34143815 [TBL] [Abstract][Full Text] [Related]
19. Ocean Acidification Accelerates the Growth of Two Bloom-Forming Macroalgae. Young CS; Gobler CJ PLoS One; 2016; 11(5):e0155152. PubMed ID: 27176637 [TBL] [Abstract][Full Text] [Related]
20. Growth and photosynthetic traits of hybrid larch F1 (Larix gmelinii var. japonica x L. kaempferi) under elevated CO2 concentration with low nutrient availability. Watanabe M; Watanabe Y; Kitaoka S; Utsugi H; Kita K; Koike T Tree Physiol; 2011 Sep; 31(9):965-75. PubMed ID: 21813517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]