These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 25648798)

  • 61. Effect of the A and B variants of both alpha s1- and kappa-casein on bovine casein micelle solvation and kappa-casein content.
    Anema SG; Creamer LK
    J Dairy Res; 1993 Nov; 60(4):505-16. PubMed ID: 8294607
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Immunoglobulin E epitope mapping by microarray immunoassay reveals differences in immune response to genetic variants of caseins from different ruminant species.
    Lisson M; Novak N; Erhardt G
    J Dairy Sci; 2014; 97(4):1939-54. PubMed ID: 24485684
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structural studies on casein micelles of human milk: dissociation of beta-casein of different phosphorylation levels induced by cooling and ethylenediaminetetraacetate.
    Sood SM; Herbert PJ; Slattery CW
    J Dairy Sci; 1997 Apr; 80(4):628-33. PubMed ID: 9149957
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Formation of soluble and micelle-bound protein aggregates in heated milk.
    Guyomarc'h F; Law AJ; Dalgleish DG
    J Agric Food Chem; 2003 Jul; 51(16):4652-60. PubMed ID: 14705892
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of insoluble calcium concentration on endogenous syneresis rate in rennet-coagulated bovine milk.
    Choi J; Horne DS; Lucey JA
    J Dairy Sci; 2015 Sep; 98(9):5955-66. PubMed ID: 26188568
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Factors influencing degree of glycosylation and phosphorylation of caseins in individual cow milk samples.
    Poulsen NA; Jensen HB; Larsen LB
    J Dairy Sci; 2016 May; 99(5):3325-3333. PubMed ID: 26995120
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Evaluation of Structure, Chaperone-Like Activity and Allergenicity of Reduced Glycated Adduct of Bovine β-casein.
    Yousefi R; Ferdowsi L; Tavaf Z; Sadeghian T; Tamaddon AM; Moghtaderi M; Pourpak Z
    Protein Pept Lett; 2017; 24(1):46-55. PubMed ID: 27903233
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Gelation of casein-whey protein mixtures.
    Vasbinder AJ; van de Velde F; de Kruif CG
    J Dairy Sci; 2004 May; 87(5):1167-76. PubMed ID: 15290963
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Invited review: Understanding the behavior of caseins in milk concentrates.
    Corredig M; Nair PK; Li Y; Eshpari H; Zhao Z
    J Dairy Sci; 2019 Jun; 102(6):4772-4782. PubMed ID: 30981474
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Caseins: utilizing molecular chaperone properties to control protein aggregation in foods.
    Yong YH; Foegeding EA
    J Agric Food Chem; 2010 Jan; 58(2):685-93. PubMed ID: 20025277
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The pH-dependent dissociation of beta-casein from human milk micelles: role of electrostatic interactions.
    Sood SM; Herbert PJ; Slattery CW
    J Dairy Sci; 1998 Dec; 81(12):3149-53. PubMed ID: 9891262
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A model for the formation and structure of casein micelles from subunits of variable composition.
    Slattery CW; Evard R
    Biochim Biophys Acta; 1973 Aug; 317(2):529-38. PubMed ID: 19999736
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The synergistic chaperoning operation in a Bi-chaperone system consisting of alpha-crystallin and beta-casein: bovine pancreatic insulin as the target protein.
    Yousefi R; Jalili S
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):497-504. PubMed ID: 21820881
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Limited enzymatic treatment of skim milk using chymosin affects the micelle/serum distribution of the heat-induced whey protein/kappa-casein aggregates.
    Renan M; Guyomarc'h F; Chatriot M; Gamerre V; Famelart MH
    J Agric Food Chem; 2007 Aug; 55(16):6736-45. PubMed ID: 17658821
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Supramolecular structure of the casein micelle.
    McMahon DJ; Oommen BS
    J Dairy Sci; 2008 May; 91(5):1709-21. PubMed ID: 18420601
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Protein composition of different sized casein micelles in milk after the binding of lactoferrin or lysozyme.
    Anema SG; de Kruif CG
    J Agric Food Chem; 2013 Jul; 61(29):7142-9. PubMed ID: 23808832
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Partial calcium depletion during membrane filtration affects gelation of reconstituted milk protein concentrates.
    Eshpari H; Jimenez-Flores R; Tong PS; Corredig M
    J Dairy Sci; 2015 Dec; 98(12):8454-63. PubMed ID: 26454287
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Temperature-dependent dynamics of bovine casein micelles in the range 10-40 °C.
    Liu DZ; Weeks MG; Dunstan DE; Martin GJ
    Food Chem; 2013 Dec; 141(4):4081-6. PubMed ID: 23993588
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effects of the environmental factors on the casein micelle structure studied by cryo transmission electron microscopy and small-angle x-ray scattering/ultrasmall-angle x-ray scattering.
    Marchin S; Putaux JL; Pignon F; Léonil J
    J Chem Phys; 2007 Jan; 126(4):045101. PubMed ID: 17286511
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Whole-genome association study for milk protein composition in dairy cattle.
    Schopen GC; Visker MH; Koks PD; Mullaart E; van Arendonk JA; Bovenhuis H
    J Dairy Sci; 2011 Jun; 94(6):3148-58. PubMed ID: 21605784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.