These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25648856)

  • 1. Mechanistic studies on the cascade conversion of 1,3-dihydroxyacetone and formaldehyde into α-hydroxy-γ-butyrolactone.
    Yamaguchi S; Matsuo T; Motokura K; Sakamoto Y; Miyaji A; Baba T
    ChemSusChem; 2015 Mar; 8(5):853-60. PubMed ID: 25648856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tin-catalyzed conversion of biomass-derived triose sugar and formaldehyde to α-hydroxy-γ-butyrolactone.
    Yamaguchi S; Motokura K; Sakamoto Y; Miyaji A; Baba T
    Chem Commun (Camb); 2014 May; 50(35):4600-2. PubMed ID: 24668044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Insight into a Sugar-Accelerated Tin-Catalyzed Cascade Synthesis of α-Hydroxy-γ-butyrolactone from Formaldehyde.
    Yamaguchi S; Matsuo T; Motokura K; Sakamoto Y; Miyaji A; Baba T
    ChemSusChem; 2015 Nov; 8(21):3661-7. PubMed ID: 26437691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cascade Synthesis of Five-Membered Lactones using Biomass-Derived Sugars as Carbon Nucleophiles.
    Yamaguchi S; Matsuo T; Motokura K; Miyaji A; Baba T
    Chem Asian J; 2016 Jun; 11(11):1731-7. PubMed ID: 27061111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic conversion of dihydroxyacetone to lactic acid using metal salts in water.
    Rasrendra CB; Fachri BA; Makertihartha IG; Adisasmito S; Heeres HJ
    ChemSusChem; 2011 Jun; 4(6):768-77. PubMed ID: 21598406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics and mechanisms for the unimolecular dissociation of protonated trioses and relationship to proton-mediated formaldehyde polymerization to carbohydrates in interstellar environments.
    Simakov A; Sekiguchi O; Bunkan AJ; Uggerud E
    J Am Chem Soc; 2011 Dec; 133(51):20816-22. PubMed ID: 22070639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective catalysis for cellulose conversion to lactic acid and other α-hydroxy acids.
    Dusselier M; Sels BF
    Top Curr Chem; 2014; 353():85-125. PubMed ID: 24824728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for tunneling in base-catalyzed isomerization of glyceraldehyde to dihydroxyacetone by hydride shift under formose conditions.
    Cheng L; Doubleday C; Breslow R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4218-20. PubMed ID: 25831511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid.
    Dapsens PY; Mondelli C; Pérez-Ramírez J
    ChemSusChem; 2013 May; 6(5):831-9. PubMed ID: 23554234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uses and production of chiral 3-hydroxy-gamma-butyrolactones and structurally related chemicals.
    Lee SH; Park OJ
    Appl Microbiol Biotechnol; 2009 Oct; 84(5):817-28. PubMed ID: 19652966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts.
    de Clippel F; Dusselier M; Van Rompaey R; Vanelderen P; Dijkmans J; Makshina E; Giebeler L; Oswald S; Baron GV; Denayer JF; Pescarmona PP; Jacobs PA; Sels BF
    J Am Chem Soc; 2012 Jun; 134(24):10089-101. PubMed ID: 22550936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rh(I)-catalyzed CO gas-free cyclohydrocarbonylation of alkynes with formaldehyde to alpha,beta-butenolides.
    Fuji K; Morimoto T; Tsutsumi K; Kakiuchi K
    Chem Commun (Camb); 2005 Jul; (26):3295-7. PubMed ID: 15983652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct catalytic asymmetric vinylogous conjugate addition of unsaturated butyrolactones to α,β-unsaturated thioamides.
    Yin L; Takada H; Lin S; Kumagai N; Shibasaki M
    Angew Chem Int Ed Engl; 2014 May; 53(21):5327-31. PubMed ID: 24740836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competitive Adsorption of Substrate and Solvent in Sn-Beta Zeolite During Sugar Isomerization.
    van der Graaff WN; Tempelman CH; Li G; Mezari B; Kosinov N; Pidko EA; Hensen EJ
    ChemSusChem; 2016 Nov; 9(22):3145-3149. PubMed ID: 27791334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-pot conversion of alginic acid into furfural using Amberlyst-15 as a solid acid catalyst in γ-butyrolactone/water co-solvent system.
    Kim H; Yang S; Kim DH
    Environ Res; 2020 Aug; 187():109667. PubMed ID: 32442791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape-selective Valorization of Biomass-derived Glycolaldehyde using Tin-containing Zeolites.
    Tolborg S; Meier S; Saravanamurugan S; Fristrup P; Taarning E; Sádaba I
    ChemSusChem; 2016 Nov; 9(21):3054-3061. PubMed ID: 27562820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part V - The rate determining step.
    Owens A; Lane JR; Manley-Harris M; Marie Jensen A; Jørgensen S
    Food Chem; 2019 Mar; 276():636-642. PubMed ID: 30409643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Butyl Levulinate Based on α-Angelica Lactone in the Presence of Easily Separable Heteropoly Acid Catalysts.
    Yi X; Al-Shaal MG; Ciptonugroho W; Delidovich I; Wang X; Palkovits R
    ChemSusChem; 2017 Apr; 10(7):1494-1500. PubMed ID: 28093888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ruthenium-Catalyzed Methylation of Amines with Paraformaldehyde in Water under Mild Conditions.
    van der Waals D; Heim LE; Gedig C; Herbrik F; Vallazza S; Prechtl MH
    ChemSusChem; 2016 Sep; 9(17):2343-7. PubMed ID: 27491504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the lead-catalyzed synthesis of aldopentoses.
    Zubay G
    Orig Life Evol Biosph; 1998 Feb; 28(1):13-26. PubMed ID: 11536853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.