These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25648981)

  • 1. Cellulosic ethanol production by natural bacterial consortia is enhanced by Pseudoxanthomonas taiwanensis.
    Du R; Yan J; Li S; Zhang L; Zhang S; Li J; Zhao G; Qi P
    Biotechnol Biofuels; 2015; 8(1):10. PubMed ID: 25648981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and evaluation of a natural derived bacterial consortium for efficient lignocellulosic biomass valorization.
    Du R; Li C; Pan P; Sze Ki Lin C; Yan J
    Bioresour Technol; 2021 Jun; 329():124909. PubMed ID: 33684842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture.
    Zuroff TR; Xiques SB; Curtis WR
    Biotechnol Biofuels; 2013 Apr; 6(1):59. PubMed ID: 23628342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Cellulose hydrolysis and ethanol production by a facultative anaerobe bacteria consortium H and its identification].
    Du R; Li S; Zhang X; Wang L
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):960-5. PubMed ID: 20954397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enrichment of thermophilic and mesophilic microbial consortia for efficient degradation of corn stalk.
    Lu J; Yang Z; Xu W; Shi X; Guo R
    J Environ Sci (China); 2019 Apr; 78():118-126. PubMed ID: 30665630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of cellulosic organic acids via synthetic fungal consortia.
    Scholz SA; Graves I; Minty JJ; Lin XN
    Biotechnol Bioeng; 2018 Apr; 115(4):1096-1100. PubMed ID: 29205274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Fermentative Hydrogen Production from Cellulose and Starch with Mesophilic Bacterial Consortia.
    Zagrodnik R; Seifert K
    Pol J Microbiol; 2020 Sep; 69(1):109-120. PubMed ID: 32189481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin, Selection, and Succession of Coastal Intertidal Zone-Derived Bacterial Communities Associated with the Degradation of Various Lignocellulose Substrates.
    Ma W; Lin L; Peng Q
    Microb Ecol; 2023 Oct; 86(3):1589-1603. PubMed ID: 36717391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of cellulosic and lignocellulosic waste by Pseudoxanthomonas sp R-28.
    Kumar M; Revathi K; Khanna S
    Carbohydr Polym; 2015 Dec; 134():761-6. PubMed ID: 26428183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced cellulase recovery without β-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant.
    Huang R; Guo H; Su R; Qi W; He Z
    Biotechnol Bioeng; 2017 Mar; 114(3):543-551. PubMed ID: 27696443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of an anaerobic ethanol-producing cellulolytic bacterial consortium from Great Basin hot springs with agricultural residues and energy crops.
    Zhao C; Deng Y; Wang X; Li Q; Huang Y; Liu B
    J Microbiol Biotechnol; 2014 Sep; 24(9):1280-90. PubMed ID: 24809291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain.
    Mattam AJ; Kuila A; Suralikerimath N; Choudary N; Rao PV; Velankar HR
    Biotechnol Biofuels; 2016; 9():157. PubMed ID: 27462368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulosic ethanol production: Progress, challenges and strategies for solutions.
    Liu CG; Xiao Y; Xia XX; Zhao XQ; Peng L; Srinophakun P; Bai FW
    Biotechnol Adv; 2019; 37(3):491-504. PubMed ID: 30849432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dry biorefining maximizes the potentials of simultaneous saccharification and co-fermentation for cellulosic ethanol production.
    Liu G; Zhang Q; Li H; Qureshi AS; Zhang J; Bao X; Bao J
    Biotechnol Bioeng; 2018 Jan; 115(1):60-69. PubMed ID: 28865124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.
    Singh N; Mathur AS; Tuli DK; Gupta RP; Barrow CJ; Puri M
    Biotechnol Biofuels; 2017; 10():73. PubMed ID: 28344648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different inocula produce distinctive microbial consortia with similar lignocellulose degradation capacity.
    Cortes-Tolalpa L; Jiménez DJ; de Lima Brossi MJ; Salles JF; van Elsas JD
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7713-25. PubMed ID: 27170322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved cellulosic ethanol production from corn stover with a low cellulase input using a β-glucosidase-producing yeast following a dry biorefining process.
    Geberekidan M; Zhang J; Liu ZL; Bao J
    Bioprocess Biosyst Eng; 2019 Feb; 42(2):297-304. PubMed ID: 30411143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Construction of a microbial consortium RXS with high degradation ability for cassava residues and studies on its fermentative characteristics].
    He J; Mao ZG; Zhang QH; Zhang JH; Tang L; Zhang HJ
    Huan Jing Ke Xue; 2012 Mar; 33(3):1020-7. PubMed ID: 22624403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological conversion of lignocellulosic biomass to ethanol.
    Lee J
    J Biotechnol; 1997 Jul; 56(1):1-24. PubMed ID: 9246788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of high concentrated cellulosic ethanol by acetone/water oxidized pretreated beech wood.
    Katsimpouras C; Kalogiannis KG; Kalogianni A; Lappas AA; Topakas E
    Biotechnol Biofuels; 2017; 10():54. PubMed ID: 28265300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.