These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 25649030)
21. Cephalosporium maydis is a distinct species in the Gaeumannomyces-Harpophora species complex. Saleh AA; Leslie JF Mycologia; 2004; 96(6):1294-305. PubMed ID: 21148953 [TBL] [Abstract][Full Text] [Related]
22. A Review: Late Wilt of Maize-The Pathogen, the Disease, Current Status, and Future Perspective. Degani O J Fungi (Basel); 2021 Nov; 7(11):. PubMed ID: 34829276 [TBL] [Abstract][Full Text] [Related]
23. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses. Feng S; Yue R; Tao S; Yang Y; Zhang L; Xu M; Wang H; Shen C J Integr Plant Biol; 2015 Sep; 57(9):783-95. PubMed ID: 25557253 [TBL] [Abstract][Full Text] [Related]
24. First Report of Carraro TA; Claus A; Scremin RM; Duarte HDSS; May De Mio LL Plant Dis; 2020 Oct; ():. PubMed ID: 33026305 [TBL] [Abstract][Full Text] [Related]
25. TOPLESS promotes plant immunity by repressing auxin signaling and is targeted by the fungal effector Naked1. Navarrete F; Gallei M; Kornienko AE; Saado I; Khan M; Chia KS; Darino MA; Bindics J; Djamei A Plant Commun; 2022 Mar; 3(2):100269. PubMed ID: 35529945 [TBL] [Abstract][Full Text] [Related]
26. No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Shigenaga AM; Argueso CT Semin Cell Dev Biol; 2016 Aug; 56():174-189. PubMed ID: 27312082 [TBL] [Abstract][Full Text] [Related]
27. Discovery of genomic regions associated with resistance to late wilt disease caused by Harpophora maydis (Samra, Sabet and Hing) in maize (Zea mays L.). Sunitha NC; Gangappa E; Gowda RPV; Ramesh S; Biradar S; Swamy D; Hemareddy HB J Appl Genet; 2022 May; 63(2):185-197. PubMed ID: 34841470 [TBL] [Abstract][Full Text] [Related]
28. Many ways to TOPLESS - manipulation of plant auxin signalling by a cluster of fungal effectors. Bindics J; Khan M; Uhse S; Kogelmann B; Baggely L; Reumann D; Ingole KD; Stirnberg A; Rybecky A; Darino M; Navarrete F; Doehlemann G; Djamei A New Phytol; 2022 Nov; 236(4):1455-1470. PubMed ID: 35944559 [TBL] [Abstract][Full Text] [Related]
29. Auxin synthesis gene tms1 driven by tuber-specific promoter alters hormonal status of transgenic potato plants and their responses to exogenous phytohormones. Kolachevskaya OO; Sergeeva LI; Floková K; Getman IA; Lomin SN; Alekseeva VV; Rukavtsova EB; Buryanov YI; Romanov GA Plant Cell Rep; 2017 Mar; 36(3):419-435. PubMed ID: 27999977 [TBL] [Abstract][Full Text] [Related]
30. Management of sunflower charcoal-rot and maize late-wilt diseases using the aqueous extract of vermicompost (vermitea) and environmental-safe biochar derivative (wood vinegar). Darwesh OM; Elshahawy IE Sci Rep; 2023 Oct; 13(1):17387. PubMed ID: 37833470 [TBL] [Abstract][Full Text] [Related]
31. Ger1 is a secreted aspartic acid protease essential for spore germination in Ustilago maydis. Mukherjee S; Bhakta K; Ghosh A; Ghosh A Yeast; 2023 Feb; 40(2):102-116. PubMed ID: 36562128 [TBL] [Abstract][Full Text] [Related]
32. A rapid and efficient method for assessing pathogenicity of ustilago maydis on maize and teosinte lines. Chavan S; Smith SM J Vis Exp; 2014 Jan; (83):e50712. PubMed ID: 24430201 [TBL] [Abstract][Full Text] [Related]
33. Impact of Susceptibility on Plant Hormonal Composition during Clubroot Disease Development in Canola ( Jayasinghege CPA; Ozga JA; Manolii VP; Hwang SF; Strelkov SE Plants (Basel); 2023 Aug; 12(16):. PubMed ID: 37631111 [TBL] [Abstract][Full Text] [Related]
34. Endogenous indole-3-acetamide levels contribute to the crosstalk between auxin and abscisic acid, and trigger plant stress responses in Arabidopsis. Pérez-Alonso MM; Ortiz-García P; Moya-Cuevas J; Lehmann T; Sánchez-Parra B; Björk RG; Karim S; Amirjani MR; Aronsson H; Wilkinson MD; Pollmann S J Exp Bot; 2021 Feb; 72(2):459-475. PubMed ID: 33068437 [TBL] [Abstract][Full Text] [Related]
35. Early infection response of fungal biotroph Zou K; Li Y; Zhang W; Jia Y; Wang Y; Ma Y; Lv X; Xuan Y; Du W Front Plant Sci; 2022; 13():970897. PubMed ID: 36161006 [TBL] [Abstract][Full Text] [Related]
36. Melatonin and its relationship to plant hormones. Arnao MB; Hernández-Ruiz J Ann Bot; 2018 Feb; 121(2):195-207. PubMed ID: 29069281 [TBL] [Abstract][Full Text] [Related]
37. Comparative transcriptome profiling identifies maize line specificity of fungal effectors in the maize-Ustilago maydis interaction. Schurack S; Depotter JRL; Gupta D; Thines M; Doehlemann G Plant J; 2021 May; 106(3):733-752. PubMed ID: 33570802 [TBL] [Abstract][Full Text] [Related]
38. Hormone Signaling and Its Interplay With Development and Defense Responses in Dhar N; Chen JY; Subbarao KV; Klosterman SJ Front Plant Sci; 2020; 11():584997. PubMed ID: 33250913 [TBL] [Abstract][Full Text] [Related]
39. Above and belowground phenotypic response to exogenous auxin across Sydow P; Murren CJ PeerJ; 2024; 12():e16873. PubMed ID: 38348101 [TBL] [Abstract][Full Text] [Related]
40. Hormonal responses during early embryogenesis in maize. Chen J; Lausser A; Dresselhaus T Biochem Soc Trans; 2014 Apr; 42(2):325-31. PubMed ID: 24646239 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]