These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25649124)

  • 1. HyperART: non-invasive quantification of leaf traits using hyperspectral absorption-reflectance-transmittance imaging.
    Bergsträsser S; Fanourakis D; Schmittgen S; Cendrero-Mateo MP; Jansen M; Scharr H; Rascher U
    Plant Methods; 2015; 11(1):1. PubMed ID: 25649124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory assessment of
    Oerke EC; Leucker M; Steiner U
    Plant Methods; 2019; 15():133. PubMed ID: 31788018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases.
    Mahlein AK; Steiner U; Hillnhütter C; Dehne HW; Oerke EC
    Plant Methods; 2012 Jan; 8(1):3. PubMed ID: 22273513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of chlorophyll content based on optical properties of maize leaves.
    Pan W; Cheng X; Du R; Zhu X; Guo W
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 309():123843. PubMed ID: 38215563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of leaf traits from reflectance measurements: comparison between methods based on vegetation indices and several versions of the PROSPECT model.
    Jiang J; Comar A; Burger P; Bancal P; Weiss M; Baret F
    Plant Methods; 2018; 14():23. PubMed ID: 29581726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Phenotyping of Maize Leaf Physiological and Biochemical Traits Using Hyperspectral Reflectance.
    Yendrek CR; Tomaz T; Montes CM; Cao Y; Morse AM; Brown PJ; McIntyre LM; Leakey AD; Ainsworth EA
    Plant Physiol; 2017 Jan; 173(1):614-626. PubMed ID: 28049858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperspectral Imaging in the UV Range Allows for Differentiation of Sugar Beet Diseases Based on Changes in Secondary Plant Metabolites.
    Brugger A; Yamati FI; Barreto A; Paulus S; Schramowsk P; Kersting K; Steiner U; Neugart S; Mahlein AK
    Phytopathology; 2023 Jan; 113(1):44-54. PubMed ID: 35904439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf and canopy reflectance spectrometry applied to the estimation of angular leaf spot disease severity of common bean crops.
    Martínez-Martínez V; Gomez-Gil J; Machado ML; Pinto FAC
    PLoS One; 2018; 13(4):e0196072. PubMed ID: 29698420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nondestructive measurement of chlorophyll pigment content in plant leaves from three-color reflectance and transmittance.
    Yamada N; Fujimura S
    Appl Opt; 1991 Sep; 30(27):3964-73. PubMed ID: 20706488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperspectral imaging reveals the effect of sugar beet quantitative trait loci on Cercospora leaf spot resistance.
    Leucker M; Wahabzada M; Kersting K; Peter M; Beyer W; Steiner U; Mahlein AK; Oerke EC
    Funct Plant Biol; 2016 Feb; 44(1):1-9. PubMed ID: 32480541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Estimations of chlorophyll and water contents in live leaf of winter wheat with reflectance spectroscopy].
    Ji HY; Wang PX; Yan TL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Mar; 27(3):514-6. PubMed ID: 17554911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-invasive Presymptomatic Detection of
    Arens N; Backhaus A; Döll S; Fischer S; Seiffert U; Mock HP
    Front Plant Sci; 2016; 7():1377. PubMed ID: 27713750
    [No Abstract]   [Full Text] [Related]  

  • 13. Identification of plant leaf phosphorus content at different growth stages based on hyperspectral reflectance.
    Siedliska A; Baranowski P; Pastuszka-Woźniak J; Zubik M; Krzyszczak J
    BMC Plant Biol; 2021 Jan; 21(1):28. PubMed ID: 33413120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput analysis of leaf physiological and chemical traits with VIS-NIR-SWIR spectroscopy: a case study with a maize diversity panel.
    Ge Y; Atefi A; Zhang H; Miao C; Ramamurthy RK; Sigmon B; Yang J; Schnable JC
    Plant Methods; 2019; 15():66. PubMed ID: 31391863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Method for Estimating the Chlorophyll Contents in Plant Leaves.
    Pérez-Patricio M; Camas-Anzueto JL; Sanchez-Alegría A; Aguilar-González A; Gutiérrez-Miceli F; Escobar-Gómez E; Voisin Y; Rios-Rojas C; Grajales-Coutiño R
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29470432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance imaging of sugar beet taproots in soil reveals growth reduction and morphological changes during foliar Cercospora beticola infestation.
    Schmittgen S; Metzner R; Van Dusschoten D; Jansen M; Fiorani F; Jahnke S; Rascher U; Schurr U
    J Exp Bot; 2015 Sep; 66(18):5543-53. PubMed ID: 25873673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo photoprotection mechanisms observed from leaf spectral absorbance changes showing VIS-NIR slow-induced conformational pigment bed changes.
    Van Wittenberghe S; Alonso L; Malenovský Z; Moreno J
    Photosynth Res; 2019 Dec; 142(3):283-305. PubMed ID: 31541418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperspectral leaf reflectance of Carpinus betulus L. saplings for urban air quality estimation.
    Brackx M; Van Wittenberghe S; Verhelst J; Scheunders P; Samson R
    Environ Pollut; 2017 Jan; 220(Pt A):159-167. PubMed ID: 27720547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput Analysis of Leaf Chlorophyll Content in Aquaponically Grown Lettuce Using Hyperspectral Reflectance and RGB Images.
    Taha MF; Mao H; Wang Y; ElManawy AI; Elmasry G; Wu L; Memon MS; Niu Z; Huang T; Qiu Z
    Plants (Basel); 2024 Jan; 13(3):. PubMed ID: 38337925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the Spectral Properties of Sunlit and Shaded Components in Rice Canopies with Near-Ground Imaging Spectroscopy Data.
    Zhou K; Deng X; Yao X; Tian Y; Cao W; Zhu Y; Ustin SL; Cheng T
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28335375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.