These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 25649522)
1. Mechanistic insights into the luminescent sensing of organophosphorus chemical warfare agents and simulants using trivalent lanthanide complexes. Dennison GH; Johnston MR Chemistry; 2015 Apr; 21(17):6328-38. PubMed ID: 25649522 [TBL] [Abstract][Full Text] [Related]
2. Supramolecular chemistry and chemical warfare agents: from fundamentals of recognition to catalysis and sensing. Sambrook MR; Notman S Chem Soc Rev; 2013 Dec; 42(24):9251-67. PubMed ID: 24048279 [TBL] [Abstract][Full Text] [Related]
3. Using cheminformatics to find simulants for chemical warfare agents. Lavoie J; Srinivasan S; Nagarajan R J Hazard Mater; 2011 Oct; 194():85-91. PubMed ID: 21872989 [TBL] [Abstract][Full Text] [Related]
4. Detection and remediation of organophosphorus compounds by oximate containing organogels. Hiscock JR; Sambrook MR; Wells NJ; Gale PA Chem Sci; 2015 Oct; 6(10):5680-5684. PubMed ID: 28791084 [TBL] [Abstract][Full Text] [Related]
5. Identification of organophosphorus simulants for the development of next-generation detection technologies. Ellaby RJ; Clark ER; Allen N; Taylor FR; Ng KKL; Dimitrovski M; Chu DF; Mulvihill DP; Hiscock JR Org Biomol Chem; 2021 Mar; 19(9):2008-2014. PubMed ID: 33586753 [TBL] [Abstract][Full Text] [Related]
6. Advances in Noble-Metal Nanoparticle-Based Fluorescence Detection of Organophosphorus Chemical Warfare Agents. Numan A; Singh PS; Alam A; Khalid M; Li L; Singh S ACS Omega; 2022 Aug; 7(31):27079-27089. PubMed ID: 35967060 [TBL] [Abstract][Full Text] [Related]
7. Supramolecular Sensing of Chemical Warfare Agents. Butera E; Zammataro A; Pappalardo A; Trusso Sfrazzetto G Chempluschem; 2021 Apr; 86(4):681-695. PubMed ID: 33881227 [TBL] [Abstract][Full Text] [Related]
8. Supramolecular recognition of a CWA simulant by metal-salen complexes: the first multi-topic approach. Puglisi R; Pappalardo A; Gulino A; Trusso Sfrazzetto G Chem Commun (Camb); 2018 Oct; 54(79):11156-11159. PubMed ID: 30226513 [TBL] [Abstract][Full Text] [Related]
9. Challenges in Fluorescence Detection of Chemical Warfare Agent Vapors Using Solid-State Films. Fan S; Zhang G; Dennison GH; FitzGerald N; Burn PL; Gentle IR; Shaw PE Adv Mater; 2020 May; 32(18):e1905785. PubMed ID: 31692155 [TBL] [Abstract][Full Text] [Related]
10. Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer. Hu G; Xiong W; Luo H; Shi H; Li Z; Shen J; Fang X; Xu B; Zhang J Appl Spectrosc; 2018 Jan; 72(1):151-158. PubMed ID: 28627233 [TBL] [Abstract][Full Text] [Related]
11. Fluorescent sensors for the detection of chemical warfare agents. Burnworth M; Rowan SJ; Weder C Chemistry; 2007; 13(28):7828-36. PubMed ID: 17705326 [TBL] [Abstract][Full Text] [Related]
12. Acid is a potential interferent in fluorescent sensing of chemical warfare agent vapors. Fan S; Dennison GH; FitzGerald N; Burn PL; Gentle IR; Shaw PE Commun Chem; 2021 Mar; 4(1):45. PubMed ID: 36697578 [TBL] [Abstract][Full Text] [Related]
13. Array of Love-wave sensors based on quartz/Novolac to detect CWA simulants. Matatagui D; Fontecha J; Fernández MJ; Aleixandre M; Gràcia I; Cané C; Horrillo MC Talanta; 2011 Sep; 85(3):1442-7. PubMed ID: 21807207 [TBL] [Abstract][Full Text] [Related]
14. Graphene Nanoplatelet-Polymer Chemiresistive Sensor Arrays for the Detection and Discrimination of Chemical Warfare Agent Simulants. Wiederoder MS; Nallon EC; Weiss M; McGraw SK; Schnee VP; Bright CJ; Polcha MP; Paffenroth R; Uzarski JR ACS Sens; 2017 Nov; 2(11):1669-1678. PubMed ID: 29019400 [TBL] [Abstract][Full Text] [Related]
15. Adductomics: a promising tool for the verification of chemical warfare agents' exposures in biological samples. Golime R; Chandra B; Palit M; Dubey DK Arch Toxicol; 2019 Jun; 93(6):1473-1484. PubMed ID: 30923868 [TBL] [Abstract][Full Text] [Related]
16. Use of NMR techniques for toxic organophosphorus compound profiling. Koskela H J Chromatogr B Analyt Technol Biomed Life Sci; 2010 May; 878(17-18):1365-81. PubMed ID: 19939751 [TBL] [Abstract][Full Text] [Related]
17. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants. Martin AN; Farquar GR; Frank M; Gard EE; Fergenson DP Anal Chem; 2007 Aug; 79(16):6368-75. PubMed ID: 17630721 [TBL] [Abstract][Full Text] [Related]
18. Malonamide-functionalized gold nanoparticles for selective, colorimetric sensing of trivalent lanthanide ions. Lisowski CE; Hutchison JE Anal Chem; 2009 Dec; 81(24):10246-53. PubMed ID: 19904966 [TBL] [Abstract][Full Text] [Related]