These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25649626)

  • 1. Decoupled fluorescence Monte Carlo model for direct computation of fluorescence in turbid media.
    Luo Z; Deng Y; Wang K; Lian L; Yang X; Luo Q
    J Biomed Opt; 2015 Feb; 20(2):25002. PubMed ID: 25649626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of path-history-based fluorescence Monte Carlo method for photon migration in heterogeneous media.
    Jiang X; Deng Y; Luo Z; Wang K; Lian L; Yang X; Meglinski I; Luo Q
    Opt Express; 2014 Dec; 22(26):31948-65. PubMed ID: 25607163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.
    Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM
    Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media.
    Liebert A; Wabnitz H; Zołek N; Macdonald R
    Opt Express; 2008 Aug; 16(17):13188-202. PubMed ID: 18711557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model.
    Ong YH; Zhu C; Liu Q
    J Biomed Opt; 2014 Aug; 19(8):085006. PubMed ID: 25117077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovering intrinsic fluorescence by Monte Carlo modeling.
    Müller M; Hendriks BH
    J Biomed Opt; 2013 Feb; 18(2):27009. PubMed ID: 23400402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties.
    Ma G; Delorme JF; Gallant P; Boas DA
    Appl Opt; 2007 Apr; 46(10):1686-92. PubMed ID: 17356611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity analysis for oblique incidence reflectometry using Monte Carlo simulations.
    Kamran F; Andersen PE
    Appl Opt; 2015 Aug; 54(23):7099-105. PubMed ID: 26368382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods.
    Vishwanath K; Pogue B; Mycek MA
    Phys Med Biol; 2002 Sep; 47(18):3387-405. PubMed ID: 12375827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte-Carlo-based model for the extraction of intrinsic fluorescence from turbid media.
    Palmer GM; Ramanujam N
    J Biomed Opt; 2008; 13(2):024017. PubMed ID: 18465980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of single Monte Carlo methods for prediction of reflectance from turbid media.
    Martinelli M; Gardner A; Cuccia D; Hayakawa C; Spanier J; Venugopalan V
    Opt Express; 2011 Sep; 19(20):19627-42. PubMed ID: 21996904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative fluorescence spectroscopy in turbid media using fluorescence differential path length spectroscopy.
    Amelink A; Kruijt B; Robinson DJ; Sterenborg HJ
    J Biomed Opt; 2008; 13(5):054051. PubMed ID: 19021431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extension of the GATE Monte-Carlo simulation package to model bioluminescence and fluorescence imaging.
    Cuplov V; Buvat I; Pain F; Jan S
    J Biomed Opt; 2014 Feb; 19(2):026004. PubMed ID: 24522804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Monte Carlo computation of time-resolved fluorescence in heterogeneous turbid media.
    Kumar AT
    Opt Lett; 2012 Nov; 37(22):4783-5. PubMed ID: 23164912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate quantification of fluorescent targets within turbid media based on a decoupled fluorescence Monte Carlo model.
    Deng Y; Luo Z; Jiang X; Xie W; Luo Q
    Opt Lett; 2015 Jul; 40(13):3129-32. PubMed ID: 26125384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the optical properties of turbid media from a single Monte Carlo simulation.
    Kienle A; Patterson MS
    Phys Med Biol; 1996 Oct; 41(10):2221-7. PubMed ID: 8912392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast perturbation Monte Carlo method for photon migration in heterogeneous turbid media.
    Sassaroli A
    Opt Lett; 2011 Jun; 36(11):2095-7. PubMed ID: 21633460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of estimation of optical properties of sub superficial structures in multi layered tissue model using distribution function method.
    Żołek N; Rix H; Botwicz M
    Comput Methods Programs Biomed; 2020 Jan; 183():105084. PubMed ID: 31580969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.