BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 25649643)

  • 1. Accurate reaction barrier heights of pericyclic reactions: Surprisingly large deviations for the CBS-QB3 composite method and their consequences in DFT benchmark studies.
    Karton A; Goerigk L
    J Comput Chem; 2015 Apr; 36(9):622-32. PubMed ID: 25649643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heats of formation of platonic hydrocarbon cages by means of high-level thermochemical procedures.
    Karton A; Schreiner PR; Martin JM
    J Comput Chem; 2016 Jan; 37(1):49-58. PubMed ID: 26096132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thinking out of the black box: accurate barrier heights of 1,3-dipolar cycloadditions of ozone with acetylene and ethylene.
    Wheeler SE; Ess DH; Houk KN
    J Phys Chem A; 2008 Feb; 112(8):1798-807. PubMed ID: 18247512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of theoretical procedures for calculating barrier heights for a diverse set of water-catalyzed proton-transfer reactions.
    Karton A; O'Reilly RJ; Radom L
    J Phys Chem A; 2012 Apr; 116(16):4211-21. PubMed ID: 22497287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and Thermodynamics of Reactions Involving Criegee Intermediates: An Assessment of Density Functional Theory and Ab Initio Methods Through Comparison with CCSDT(Q)/CBS Data.
    Smith CD; Karton A
    J Comput Chem; 2020 Feb; 41(4):328-339. PubMed ID: 31750964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation energies of pericyclic reactions: performance of DFT, MP2, and CBS-QB3 methods for the prediction of activation barriers and reaction energetics of 1,3-dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions.
    Ess DH; Houk KN
    J Phys Chem A; 2005 Oct; 109(42):9542-53. PubMed ID: 16866406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New accurate benchmark energies for large water clusters: DFT is better than expected.
    Anacker T; Friedrich J
    J Comput Chem; 2014 Mar; 35(8):634-43. PubMed ID: 24482156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmark theoretical study of the π-π binding energy in the benzene dimer.
    Miliordos E; Aprà E; Xantheas SS
    J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The curious case of DMSO: A CCSD(T)/CBS(aQ56+d) benchmark and DFT study.
    Olive LN; Dornshuld EV; Webster CE
    J Chem Phys; 2021 Sep; 155(11):114304. PubMed ID: 34551533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of London dispersion on the isomerization reactions of large organic molecules: a density functional benchmark study.
    Huenerbein R; Schirmer B; Moellmann J; Grimme S
    Phys Chem Chem Phys; 2010 Jul; 12(26):6940-8. PubMed ID: 20461239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Thermochemical Benchmark Set of Realistic Closed-Shell Metal Organic Reactions.
    Dohm S; Hansen A; Steinmetz M; Grimme S; Checinski MP
    J Chem Theory Comput; 2018 May; 14(5):2596-2608. PubMed ID: 29565586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. Derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics.
    Karton A; Tarnopolsky A; Lamère JF; Schatz GC; Martin JM
    J Phys Chem A; 2008 Dec; 112(50):12868-86. PubMed ID: 18714947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heats of Formation of Medium-Sized Organic Compounds from Contemporary Electronic Structure Methods.
    Minenkov Y; Wang H; Wang Z; Sarathy SM; Cavallo L
    J Chem Theory Comput; 2017 Aug; 13(8):3537-3560. PubMed ID: 28636351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simplified wave function models in thermochemical protocols based on bond separation reactions.
    Bakowies D
    J Phys Chem A; 2014 Dec; 118(50):11811-27. PubMed ID: 25426545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The DBH24/08 Database and Its Use to Assess Electronic Structure Model Chemistries for Chemical Reaction Barrier Heights.
    Zheng J; Zhao Y; Truhlar DG
    J Chem Theory Comput; 2009 Apr; 5(4):808-21. PubMed ID: 26609587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substituent effects on singlet-triplet gaps and mechanisms of 1,2-rearrangements of 1,3-oxazol-2-ylidenes to 1,3-oxazoles.
    Freeman F; Lau DJ; Patel AR; Pavia PR; Willey JD
    J Phys Chem A; 2008 Sep; 112(37):8775-84. PubMed ID: 18714948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of spin-component-scaled Møller-Plesset theory (SCS-MP2) for potential energy curves of noncovalent interactions.
    Takatani T; David Sherrill C
    Phys Chem Chem Phys; 2007 Dec; 9(46):6106-14. PubMed ID: 18167585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactions of hydrogen atom with hydrogen peroxide.
    Ellingson BA; Theis DP; Tishchenko O; Zheng J; Truhlar DG
    J Phys Chem A; 2007 Dec; 111(51):13554-66. PubMed ID: 18052356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmarking Compound Methods (CBS-QB3, CBS-APNO, G3, G4, W1BD) against the Active Thermochemical Tables: Formation Enthalpies of Radicals.
    Somers KP; Simmie JM
    J Phys Chem A; 2015 Aug; 119(33):8922-33. PubMed ID: 26171842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.