BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 25649831)

  • 1. RhoGTPases as key players in mammalian cell adaptation to microgravity.
    Louis F; Deroanne C; Nusgens B; Vico L; Guignandon A
    Biomed Res Int; 2015; 2015():747693. PubMed ID: 25649831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of microgravity on osteoclast bone resorption and osteoblast cytoskeletal organization and adhesion.
    Nabavi N; Khandani A; Camirand A; Harrison RE
    Bone; 2011 Nov; 49(5):965-74. PubMed ID: 21839189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function of the cytoskeleton in gravisensing during spaceflight.
    Hughes-Fulford M
    Adv Space Res; 2003; 32(8):1585-93. PubMed ID: 15002415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitophagy contributes to endothelial adaptation to simulated microgravity.
    Locatelli L; Cazzaniga A; De Palma C; Castiglioni S; Maier JAM
    FASEB J; 2020 Jan; 34(1):1833-1845. PubMed ID: 31914607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression profile of RhoGTPases and RhoGEFs during RANKL-stimulated osteoclastogenesis: identification of essential genes in osteoclasts.
    Brazier H; Stephens S; Ory S; Fort P; Morrison N; Blangy A
    J Bone Miner Res; 2006 Sep; 21(9):1387-98. PubMed ID: 16939397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focal contact clustering in osteoblastic cells under mechanical stresses: microgravity and cyclic deformation.
    Guignandon A; Akhouayri O; Usson Y; Rattner A; Laroche N; Lafage-Proust MH; Alexandre C; Vico L
    Cell Commun Adhes; 2003; 10(2):69-83. PubMed ID: 14681058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parathyroid hormone-related protein is a gravisensor in lung and bone cell biology.
    Torday JS
    Adv Space Res; 2003; 32(8):1569-76. PubMed ID: 15000128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of REM sleep to Fos and FRA expression in the vestibular nuclei of rat leading to vestibular adaptation during the STS-90 Neurolab Mission.
    Pompeiano O
    Arch Ital Biol; 2007 Jan; 145(1):55-85. PubMed ID: 17274184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gravitational neuromorphology.
    Krasnov IB
    Adv Space Biol Med; 1994; 4():85-110. PubMed ID: 7757255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Experiments using rats on Kosmos biosatellites: morphologic and biochemical studies].
    Il'in EA; Kaplanskiĭ AS; Savina EA
    Kosm Biol Aviakosm Med; 1989; 23(4):4-9. PubMed ID: 2685464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term effects of microgravity on the swimming behaviour of young rats.
    Walton KD; Benavides L; Singh N; Hatoum N
    J Physiol; 2005 Jun; 565(Pt 2):609-26. PubMed ID: 15760948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Stress and microgravity].
    Stepanova SI
    Aviakosm Ekolog Med; 2005; 39(6):48-54. PubMed ID: 16536034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations of the cytoskeleton in human cells in space proved by life-cell imaging.
    Corydon TJ; Kopp S; Wehland M; Braun M; Schütte A; Mayer T; Hülsing T; Oltmann H; Schmitz B; Hemmersbach R; Grimm D
    Sci Rep; 2016 Jan; 6():20043. PubMed ID: 26818711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Critical periods" in vestibular development or adaptation of gravity sensory systems to altered gravitational conditions?
    Horn ER
    Arch Ital Biol; 2004 May; 142(3):155-74. PubMed ID: 15260375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of simulated microgravity on the activation of the small GTPase Rho involved in cytoskeletal formation--molecular cloning and sequencing of bovine leukemia-associated guanine nucleotide exchange factor.
    Higashibata A; Imamizo-Sato M; Seki M; Yamazaki T; Ishioka N
    BMC Biochem; 2006 Jun; 7():19. PubMed ID: 16803636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiovascular physiology. Effects of microgravity.
    Convertino V; Hoffler GW
    J Fla Med Assoc; 1992 Aug; 79(8):517-24. PubMed ID: 1402772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The maternal-fetal system as an object for the study of mechanisms of the physiologic effect of weightlessness].
    Serova LV
    Kosm Biol Aviakosm Med; 1987; 21(3):63-6. PubMed ID: 3613498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Functional plasticity of mammalian skeletal muscles under microgravity].
    Oganov VS; Potapov AN
    Aviakosm Ekolog Med; 2006; 40(1):27-35. PubMed ID: 16915810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How and why does the proteome respond to microgravity?
    Grimm D; Wise P; Lebert M; Richter P; Baatout S
    Expert Rev Proteomics; 2011 Feb; 8(1):13-27. PubMed ID: 21329425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Experiments on rats exposed in the Cosmos 1667 biosatellite (goals, protocols, results)].
    Gazenko OG; Il'in EA; Savina EA; Serova LV; Kaplanskiĭ AS
    Kosm Biol Aviakosm Med; 1987; 21(4):9-16. PubMed ID: 2958658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.