These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25649863)

  • 1. Identifying genetic interactions associated with late-onset Alzheimer's disease.
    Floudas CS; Um N; Kamboh MI; Barmada MM; Visweswaran S
    BioData Min; 2014; 7(1):35. PubMed ID: 25649863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The application of network label propagation to rank biomarkers in genome-wide Alzheimer's data.
    Stokes ME; Barmada MM; Kamboh MI; Visweswaran S
    BMC Genomics; 2014 Apr; 15():282. PubMed ID: 24731236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LEAP: biomarker inference through learning and evaluating association patterns.
    Jiang X; Neapolitan RE
    Genet Epidemiol; 2015 Mar; 39(3):173-84. PubMed ID: 25677188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a late onset Alzheimer's disease candidate risk variant at 9q21.33 in Polish patients.
    Gaj P; Paziewska A; Bik W; Dąbrowska M; Baranowska-Bik A; Styczynska M; Chodakowska-Żebrowska M; Pfeffer-Baczuk A; Barcikowska M; Baranowska B; Ostrowski J
    J Alzheimers Dis; 2012; 32(1):157-68. PubMed ID: 22785395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shared genetic etiology underlying Alzheimer's disease and type 2 diabetes.
    Hao K; Di Narzo AF; Ho L; Luo W; Li S; Chen R; Li T; Dubner L; Pasinetti GM
    Mol Aspects Med; 2015; 43-44():66-76. PubMed ID: 26116273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GWAS-Top Polymorphisms Associated With Late-Onset Alzheimer Disease in Brazil: Pointing Out Possible New Culprits Among Non-Coding RNAs.
    Kretzschmar GC; Alencar NM; da Silva SSL; Sulzbach CD; Meissner CG; Petzl-Erler ML; Souza RLR; Boldt ABW
    Front Mol Biosci; 2021; 8():632314. PubMed ID: 34291080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying genetic interactions in genome-wide data using Bayesian networks.
    Jiang X; Barmada MM; Visweswaran S
    Genet Epidemiol; 2010 Sep; 34(6):575-81. PubMed ID: 20568290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Late-onset Alzheimer disease risk variants mark brain regulatory loci.
    Allen M; Kachadoorian M; Carrasquillo MM; Karhade A; Manly L; Burgess JD; Wang C; Serie D; Wang X; Siuda J; Zou F; Chai HS; Younkin C; Crook J; Medway C; Nguyen T; Ma L; Malphrus K; Lincoln S; Petersen RC; Graff-Radford NR; Asmann YW; Dickson DW; Younkin SG; Ertekin-Taner N
    Neurol Genet; 2015 Aug; 1(2):e15. PubMed ID: 27066552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing third-order interactions through the integration of machine learning and entropy methods in genomic studies.
    Yaldız B; Erdoğan O; Rafatov S; Iyigün C; Aydın Son Y
    BioData Min; 2024 Jan; 17(1):3. PubMed ID: 38291454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using In silico LD clumping and meta-analysis of genome-wide datasets as a complementary tool to investigate and validate new candidate biomarkers in Alzheimer's disease.
    Medway C; Shi H; Bullock J; Black H; Brown K; Vafadar-Isfahani B; Matharoo-Ball B; Ball G; Rees R; Kalsheker N; Morgan K
    Int J Mol Epidemiol Genet; 2010 Mar; 1(2):134-44. PubMed ID: 21537386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Family-based association analyses of imputed genotypes reveal genome-wide significant association of Alzheimer's disease with OSBPL6, PTPRG, and PDCL3.
    Herold C; Hooli BV; Mullin K; Liu T; Roehr JT; Mattheisen M; Parrado AR; Bertram L; Lange C; Tanzi RE
    Mol Psychiatry; 2016 Nov; 21(11):1608-1612. PubMed ID: 26830138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hidden risk genes with high-order intragenic epistasis in Alzheimer's disease.
    Sun J; Song F; Wang J; Han G; Bai Z; Xie B; Feng X; Jia J; Duan Y; Lei H
    J Alzheimers Dis; 2014; 41(4):1039-56. PubMed ID: 24762948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning methods applied to genotyping data capture interactions between single nucleotide variants in late onset Alzheimer's disease.
    Arnal Segura M; Bini G; Fernandez Orth D; Samaras E; Kassis M; Aisopos F; Rambla De Argila J; Paliouras G; Garrard P; Giambartolomei C; Tartaglia GG
    Alzheimers Dement (Amst); 2022; 14(1):e12300. PubMed ID: 35415203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An algorithm for direct causal learning of influences on patient outcomes.
    Rathnam C; Lee S; Jiang X
    Artif Intell Med; 2017 Jan; 75():1-15. PubMed ID: 28363452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking Alzheimer's disease and type 2 diabetes: Novel shared susceptibility genes detected by cFDR approach.
    Wang XF; Lin X; Li DY; Zhou R; Greenbaum J; Chen YC; Zeng CP; Peng LP; Wu KH; Ao ZX; Lu JM; Guo YF; Shen J; Deng HW
    J Neurol Sci; 2017 Sep; 380():262-272. PubMed ID: 28870582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grid-based stochastic search for hierarchical gene-gene interactions in population-based genetic studies of common human diseases.
    Moore JH; Andrews PC; Olson RS; Carlson SE; Larock CR; Bulhoes MJ; O'Connor JP; Greytak EM; Armentrout SL
    BioData Min; 2017; 10():19. PubMed ID: 28572842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gout and the risk of Alzheimer's disease: A Mendelian randomization study.
    Lee YH
    Int J Rheum Dis; 2019 Jun; 22(6):1046-1051. PubMed ID: 30924303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data integration for functional annotation of regulatory single nucleotide polymorphisms associated with Alzheimer's disease susceptibility.
    Amber S; Zahid S
    Gene; 2018 Sep; 672():115-125. PubMed ID: 29883757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic Interactions Explain Variance in Cingulate Amyloid Burden: An AV-45 PET Genome-Wide Association and Interaction Study in the ADNI Cohort.
    Li J; Zhang Q; Chen F; Yan J; Kim S; Wang L; Feng W; Saykin AJ; Liang H; Shen L
    Biomed Res Int; 2015; 2015():647389. PubMed ID: 26421299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.