These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 25649876)
1. Impact of Early and Late Visual Deprivation on the Structure of the Corpus Callosum: A Study Combining Thickness Profile with Surface Tensor-Based Morphometry. Shi J; Collignon O; Xu L; Wang G; Kang Y; Leporé F; Lao Y; Joshi AA; Leporé N; Wang Y Neuroinformatics; 2015 Jul; 13(3):321-336. PubMed ID: 25649876 [TBL] [Abstract][Full Text] [Related]
2. Morphometric changes of the corpus callosum in congenital blindness. Tomaiuolo F; Campana S; Collins DL; Fonov VS; Ricciardi E; Sartori G; Pietrini P; Kupers R; Ptito M PLoS One; 2014; 9(9):e107871. PubMed ID: 25255324 [TBL] [Abstract][Full Text] [Related]
3. Organization of the commissural fiber system in congenital and late-onset blindness. Cavaliere C; Aiello M; Soddu A; Laureys S; Reislev NL; Ptito M; Kupers R Neuroimage Clin; 2020; 25():102133. PubMed ID: 31945651 [TBL] [Abstract][Full Text] [Related]
4. Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area. Park HJ; Lee JD; Kim EY; Park B; Oh MK; Lee S; Kim JJ Neuroimage; 2009 Aug; 47(1):98-106. PubMed ID: 19361567 [TBL] [Abstract][Full Text] [Related]
5. Brain structure changes visualized in early- and late-onset blind subjects. Leporé N; Voss P; Lepore F; Chou YY; Fortin M; Gougoux F; Lee AD; Brun C; Lassonde M; Madsen SK; Toga AW; Thompson PM Neuroimage; 2010 Jan; 49(1):134-40. PubMed ID: 19643183 [TBL] [Abstract][Full Text] [Related]
6. Morphometry of the corpus callosum in monozygotic twins discordant for schizophrenia: a magnetic resonance imaging study. Casanova MF; Sanders RD; Goldberg TE; Bigelow LB; Christison G; Torrey EF; Weinberger DR J Neurol Neurosurg Psychiatry; 1990 May; 53(5):416-21. PubMed ID: 2351971 [TBL] [Abstract][Full Text] [Related]
7. In vivo evaluation of retinal and callosal projections in early postnatal development and plasticity using manganese-enhanced MRI and diffusion tensor imaging. Chan KC; Cheng JS; Fan S; Zhou IY; Yang J; Wu EX Neuroimage; 2012 Feb; 59(3):2274-83. PubMed ID: 21985904 [TBL] [Abstract][Full Text] [Related]
8. Functional Connectivity Density in Congenitally and Late Blind Subjects. Qin W; Xuan Y; Liu Y; Jiang T; Yu C Cereb Cortex; 2015 Sep; 25(9):2507-16. PubMed ID: 24642421 [TBL] [Abstract][Full Text] [Related]
9. Anatomic differences in early blindness: a deformation-based morphometry MRI study. Yang C; Wu S; Lu W; Bai Y; Gao H J Neuroimaging; 2014; 24(1):68-73. PubMed ID: 22244017 [TBL] [Abstract][Full Text] [Related]
10. Alterations of the visual pathways in congenital blindness. Ptito M; Schneider FC; Paulson OB; Kupers R Exp Brain Res; 2008 May; 187(1):41-9. PubMed ID: 18224306 [TBL] [Abstract][Full Text] [Related]
11. Impact of blindness onset on the functional organization and the connectivity of the occipital cortex. Collignon O; Dormal G; Albouy G; Vandewalle G; Voss P; Phillips C; Lepore F Brain; 2013 Sep; 136(Pt 9):2769-83. PubMed ID: 23831614 [TBL] [Abstract][Full Text] [Related]
12. Patterns of Individual Variation in Visual Pathway Structure and Function in the Sighted and Blind. Aguirre GK; Datta R; Benson NC; Prasad S; Jacobson SG; Cideciyan AV; Bridge H; Watkins KE; Butt OH; Dain AS; Brandes L; Gennatas ED PLoS One; 2016; 11(11):e0164677. PubMed ID: 27812129 [TBL] [Abstract][Full Text] [Related]
13. Detecting 3D Corpus Callosum abnormalities in phenylketonuria. He Q; Christ SE; Karsch K; Moffitt AJ; Peck D; Duan Y Int J Comput Biol Drug Des; 2009; 2(4):289-301. PubMed ID: 20090172 [TBL] [Abstract][Full Text] [Related]
14. Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity. Vidal CN; Nicolson R; DeVito TJ; Hayashi KM; Geaga JA; Drost DJ; Williamson PC; Rajakumar N; Sui Y; Dutton RA; Toga AW; Thompson PM Biol Psychiatry; 2006 Aug; 60(3):218-25. PubMed ID: 16460701 [TBL] [Abstract][Full Text] [Related]
15. Visual callosal topography in the absence of retinal input. Bock AS; Saenz M; Tungaraza R; Boynton GM; Bridge H; Fine I Neuroimage; 2013 Nov; 81():325-334. PubMed ID: 23684881 [TBL] [Abstract][Full Text] [Related]
16. Effect of visual experience on structural organization of the human brain: a voxel based morphometric study using DARTEL. Modi S; Bhattacharya M; Singh N; Tripathi RP; Khushu S Eur J Radiol; 2012 Oct; 81(10):2811-9. PubMed ID: 22100371 [TBL] [Abstract][Full Text] [Related]
17. Morphometry of corpus callosum in Williams syndrome: shape as an index of neural development. Sampaio A; Bouix S; Sousa N; Vasconcelos C; Férnandez M; Shenton ME; Gonçalves ÓF Brain Struct Funct; 2013 May; 218(3):711-20. PubMed ID: 22648762 [TBL] [Abstract][Full Text] [Related]
18. When, where, and how the corpus callosum changes in MCI and AD: a multimodal MRI study. Di Paola M; Di Iulio F; Cherubini A; Blundo C; Casini AR; Sancesario G; Passafiume D; Caltagirone C; Spalletta G Neurology; 2010 Apr; 74(14):1136-42. PubMed ID: 20368633 [TBL] [Abstract][Full Text] [Related]
19. Spatial imagery relies on a sensory independent, though sensory sensitive, functional organization within the parietal cortex: a fMRI study of angle discrimination in sighted and congenitally blind individuals. Bonino D; Ricciardi E; Bernardi G; Sani L; Gentili C; Vecchi T; Pietrini P Neuropsychologia; 2015 Feb; 68():59-70. PubMed ID: 25575449 [TBL] [Abstract][Full Text] [Related]
20. A new template to study callosal growth shows specific growth in anterior and posterior regions of the corpus callosum in early childhood. Ansado J; Collins L; Fonov V; Garon M; Alexandrov L; Karama S; Evans A; Beauchamp MH; Eur J Neurosci; 2015 Jul; 42(1):1675-84. PubMed ID: 25864842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]