These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 25649982)

  • 21. Experimental Investigation of Polymer-Coated Silica Nanoparticles for Enhanced Oil Recovery.
    Bila A; Stensen JÅ; Torsæter O
    Nanomaterials (Basel); 2019 May; 9(6):. PubMed ID: 31159232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Isolation and identification of surfactin producing Bacillus subtilis strain and its effect of surfactin on crude oil].
    Wang D; Liu Y; Lin Z; Yang Z; Hao C
    Wei Sheng Wu Xue Bao; 2008 Mar; 48(3):304-11. PubMed ID: 18479055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of a novel biosurfactant produced by Staphylococcus sp. strain 1E with potential application on hydrocarbon bioremediation.
    Eddouaouda K; Mnif S; Badis A; Younes SB; Cherif S; Ferhat S; Mhiri N; Chamkha M; Sayadi S
    J Basic Microbiol; 2012 Aug; 52(4):408-18. PubMed ID: 22052657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns.
    Gudiña EJ; Pereira JF; Costa R; Coutinho JA; Teixeira JA; Rodrigues LR
    J Hazard Mater; 2013 Oct; 261():106-13. PubMed ID: 23911831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Construction and evaluation of an engineered bacterial strain for producing lipopeptide under anoxic conditions].
    Liang XL; Zhao F; Shi RJ; Ban YH; Zhou JD; Han SQ; Zhang Y
    Ying Yong Sheng Tai Xue Bao; 2015 Aug; 26(8):2553-60. PubMed ID: 26685621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of pH on dynamics of microbial enhanced oil recovery processes using biosurfactant producing Pseudomonas putida: Mathematical modelling and numerical simulation.
    Sivasankar P; Suresh Kumar G
    Bioresour Technol; 2017 Jan; 224():498-508. PubMed ID: 27836230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compatibility between weak gel and microorganisms in weak gel-assisted microbial enhanced oil recovery.
    Qi YB; Zheng CG; Lv CY; Lun ZM; Ma T
    J Biosci Bioeng; 2018 Aug; 126(2):235-240. PubMed ID: 29572090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications.
    Rocha VAL; de Castilho LVA; de Castro RPV; Teixeira DB; Magalhães AV; Gomez JGC; Freire DMG
    Biotechnol Prog; 2020 Jul; 36(4):e2981. PubMed ID: 32083814
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Variations in Wettability and Interfacial Tension during Alkali-Polymer Application for High and Low TAN Oils.
    Arekhov V; Hincapie RE; Clemens T; Tahir M
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 33003407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial surfactant-enhanced mineral oil recovery under laboratory conditions.
    Bordoloi NK; Konwar BK
    Colloids Surf B Biointerfaces; 2008 May; 63(1):73-82. PubMed ID: 18164187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic investigation of nutrient consumption and injection strategy in microbial enhanced oil recovery (MEOR) by means of large-scale experiments.
    Song Z; Zhu W; Sun G; Blanckaert K
    Appl Microbiol Biotechnol; 2015 Aug; 99(15):6551-61. PubMed ID: 25895095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Role of Microbial Products in Green Enhanced Oil Recovery: Acetone and Butanone.
    Haq B
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34208164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coreflood assay using extremophile microorganisms for recovery of heavy oil in Mexican oil fields.
    Castorena-Cortés G; Roldán-Carrillo T; Reyes-Avila J; Zapata-Peñasco I; Mayol-Castillo M; Olguín-Lora P
    J Biosci Bioeng; 2012 Oct; 114(4):440-5. PubMed ID: 22704814
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.
    Amani H; Müller MM; Syldatk C; Hausmann R
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigating wettability alteration during MEOR process, a micro/macro scale analysis.
    Karimi M; Mahmoodi M; Niazi A; Al-Wahaibi Y; Ayatollahi S
    Colloids Surf B Biointerfaces; 2012 Jun; 95():129-36. PubMed ID: 22445747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigating the mechanism of interfacial tension reduction through the combination of low-salinity water and bacteria.
    Abdi A; Ranjbar B; Kazemzadeh Y; Aram F; Riazi M
    Sci Rep; 2024 May; 14(1):11408. PubMed ID: 38762671
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Starting up microbial enhanced oil recovery.
    Siegert M; Sitte J; Galushko A; Krüger M
    Adv Biochem Eng Biotechnol; 2014; 142():1-94. PubMed ID: 24240533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial community composition of a hydrocarbon reservoir 40 years after a CO2 enhanced oil recovery flood.
    Shelton JL; Andrews RS; Akob DM; DeVera CA; Mumford A; McCray JE; McIntosh JC
    FEMS Microbiol Ecol; 2018 Oct; 94(10):. PubMed ID: 30101289
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipopeptide production by
    Roldán-Carrillo T; Castorena-Cortés G; Álvarez-Ramírez F; Vázquez-Moreno F; Olguín-Lora P
    Prep Biochem Biotechnol; 2022; 52(8):872-884. PubMed ID: 34865598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulation of indigenous microbes by optimizing the water cut in low permeability reservoirs for green and enhanced oil recovery.
    Cui K; Zhang Z; Zhang Z; Sun S; Li H; Fu P
    Sci Rep; 2019 Oct; 9(1):15772. PubMed ID: 31673044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.