These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 25650345)
1. Stabilization of fungi-derived recombinant FAD-dependent glucose dehydrogenase by introducing a disulfide bond. Sakai G; Kojima K; Mori K; Oonishi Y; Sode K Biotechnol Lett; 2015 May; 37(5):1091-9. PubMed ID: 25650345 [TBL] [Abstract][Full Text] [Related]
2. Significant improvement of thermal stability of glucose 1-dehydrogenase by introducing disulfide bonds at the tetramer interface. Ding H; Gao F; Liu D; Li Z; Xu X; Wu M; Zhao Y Enzyme Microb Technol; 2013 Dec; 53(6-7):365-72. PubMed ID: 24315638 [TBL] [Abstract][Full Text] [Related]
3. Effects of N-/C-Terminal Extra Tags on the Optimal Reaction Conditions, Activity, and Quaternary Structure of Hyun J; Abigail M; Choo JW; Ryu J; Kim HK J Microbiol Biotechnol; 2016 Oct; 26(10):1708-1716. PubMed ID: 27363470 [TBL] [Abstract][Full Text] [Related]
4. Characterization of a thermostable glucose dehydrogenase with strict substrate specificity from a hyperthermophilic archaeon Thermoproteus sp. GDH-1. Aiba H; Nishiya Y; Azuma M; Yokooji Y; Atomi H; Imanaka T Biosci Biotechnol Biochem; 2015; 79(7):1094-102. PubMed ID: 25746627 [TBL] [Abstract][Full Text] [Related]
5. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase. Yamashita Y; Ferri S; Huynh ML; Shimizu H; Yamaoka H; Sode K Enzyme Microb Technol; 2013 Feb; 52(2):123-8. PubMed ID: 23273282 [TBL] [Abstract][Full Text] [Related]
6. Orientated Immobilization of FAD-Dependent Glucose Dehydrogenase on Electrode by Carbohydrate-Binding Module Fusion for Efficient Glucose Assay. Han Q; Gong W; Zhang Z; Wang L; Wang B; Cai L; Meng Q; Li Y; Liu Q; Yang Y; Zheng L; Ma Y Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073858 [TBL] [Abstract][Full Text] [Related]
7. Expression, characterization and mutagenesis of an FAD-dependent glucose dehydrogenase from Aspergillus terreus. Yang Y; Huang L; Wang J; Xu Z Enzyme Microb Technol; 2015 Jan; 68():43-9. PubMed ID: 25435504 [TBL] [Abstract][Full Text] [Related]
8. Heterologous overexpression of Glomerella cingulata FAD-dependent glucose dehydrogenase in Escherichia coli and Pichia pastoris. Sygmund C; Staudigl P; Klausberger M; Pinotsis N; Djinović-Carugo K; Gorton L; Haltrich D; Ludwig R Microb Cell Fact; 2011 Dec; 10():106. PubMed ID: 22151971 [TBL] [Abstract][Full Text] [Related]
9. Improvement in the thermal stability of Mucor prainii-derived FAD-dependent glucose dehydrogenase via protein chimerization. Masakari Y; Hara C; Araki Y; Gomi K; Ito K Enzyme Microb Technol; 2020 Jan; 132():109387. PubMed ID: 31731974 [TBL] [Abstract][Full Text] [Related]
10. Properties of a chimeric glucose dehydrogenase improved by site directed mutagenesis. Tripura C; Podile AR J Biotechnol; 2007 Aug; 131(2):197-204. PubMed ID: 17669536 [TBL] [Abstract][Full Text] [Related]
11. Co-expression of the recombined alcohol dehydrogenase and glucose dehydrogenase and cross-linked enzyme aggregates stabilization. Hu X; Liu L; Chen D; Wang Y; Zhang J; Shao L Bioresour Technol; 2017 Jan; 224():531-535. PubMed ID: 27838320 [TBL] [Abstract][Full Text] [Related]
12. Efficient expression, purification, and characterization of a novel FAD-dependent glucose dehydrogenase from Aspergillus terreus in Pichia pastoris. Yang Y; Huang L; Wang J; Wang X; Xu Z J Microbiol Biotechnol; 2014 Nov; 24(11):1516-24. PubMed ID: 25022525 [TBL] [Abstract][Full Text] [Related]
13. A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme. Piumi F; Levasseur A; Navarro D; Zhou S; Mathieu Y; Ropartz D; Ludwig R; Faulds CB; Record E Appl Microbiol Biotechnol; 2014 Dec; 98(24):10105-18. PubMed ID: 24965558 [TBL] [Abstract][Full Text] [Related]
15. Cloning and functional expression of glucose dehydrogenase complex of Burkholderia cepacia in Escherichia coli. Tsuya T; Ferri S; Fujikawa M; Yamaoka H; Sode K J Biotechnol; 2006 May; 123(2):127-36. PubMed ID: 16337300 [TBL] [Abstract][Full Text] [Related]
16. Site directed mutagenesis studies of FAD-dependent glucose dehydrogenase catalytic subunit of Burkholderia cepacia. Yamaoka H; Yamashita Y; Ferri S; Sode K Biotechnol Lett; 2008 Nov; 30(11):1967-72. PubMed ID: 18581061 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the low-temperature activity of Sulfolobus tokodaii glucose-1-dehydrogenase mutants. Sugii T; Akanuma S; Yagi S; Yagyu K; Shimoda Y; Yamagishi A J Biosci Bioeng; 2014 Oct; 118(4):367-71. PubMed ID: 24742629 [TBL] [Abstract][Full Text] [Related]
18. Biochemical and Computational Insights on a Novel Acid-Resistant and Thermal-Stable Glucose 1-Dehydrogenase. Ding H; Gao F; Yu Y; Chen B Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28587256 [TBL] [Abstract][Full Text] [Related]
19. An Fe-S cluster in the conserved Cys-rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes. Shiota M; Yamazaki T; Yoshimatsu K; Kojima K; Tsugawa W; Ferri S; Sode K Bioelectrochemistry; 2016 Dec; 112():178-83. PubMed ID: 26951961 [TBL] [Abstract][Full Text] [Related]
20. Creation of a novel DET type FAD glucose dehydrogenase harboring Escherichia coli derived cytochrome b Yanase T; Okuda-Shimazaki J; Mori K; Kojima K; Tsugawa W; Sode K Biochem Biophys Res Commun; 2020 Sep; 530(1):82-86. PubMed ID: 32828319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]