These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 25650414)

  • 21. Quantification of ischemic damage in the rat retina: a comparative study using evoked potentials, electroretinography, and histology.
    Jehle T; Wingert K; Dimitriu C; Meschede W; Lasseck J; Bach M; Lagrèze WA
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1056-64. PubMed ID: 18326730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Transient and steady-state electroretinograms and visual evoked potentials to pattern and uniform-field stimulation in humans].
    Nakayama M
    Fukuoka Igaku Zasshi; 1994 Jul; 85(7):225-34. PubMed ID: 8070753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Repetitive Transcorneal Alternating Current Stimulation Reduces Brain Idling State After Long-term Vision Loss.
    Sergeeva EG; Bola M; Wagner S; Lazik S; Voigt N; Mawrin C; Gorkin AG; Waleszczyk WJ; Sabel BA; Henrich-Noack P
    Brain Stimul; 2015; 8(6):1065-73. PubMed ID: 26145756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of an extraocular retinal prosthesis: evaluation of stimulation parameters in the cat.
    Chowdhury V; Morley JW; Coroneo MT
    J Clin Neurosci; 2008 Aug; 15(8):900-6. PubMed ID: 18586497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimulation of the retina with a multielectrode extraocular visual prosthesis.
    Chowdhury V; Morley JW; Coroneo MT
    ANZ J Surg; 2005 Aug; 75(8):697-704. PubMed ID: 16076336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Properties of electrically evoked potentials activated by optic nerve stimulation with penetrating electrodes of different modes in rabbits.
    Cao P; Sun J; Yan Y; Chen Y; Chai X; Sun X; Ren Q; Li L
    Graefes Arch Clin Exp Ophthalmol; 2015 Dec; 253(12):2171-80. PubMed ID: 26228440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of stimulating electrode conditions on electrically evoked potentials and resistance in suprachoroidal transretinal stimulation.
    Nishida K; Morimoto T; Terasawa Y; Sakaguchi H; Kamei M; Miyoshi T; Fujikado T; Nishida K
    Jpn J Ophthalmol; 2023 Mar; 67(2):182-188. PubMed ID: 36626079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficacy and reliability of long-term implantation of multi-channel microelectrode arrays in the optical nerve sheath of rabbit eyes.
    Wang K; Li XQ; Li XX; Pei WH; Chen HD; Dong JQ
    Vision Res; 2011 Sep; 51(17):1897-906. PubMed ID: 21763712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulated nystagmus suppresses pattern-reversal but not pattern-onset visual evoked potentials.
    Hoffmann MB; Seufert PS; Bach M
    Clin Neurophysiol; 2004 Nov; 115(11):2659-65. PubMed ID: 15465456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A chronic implant to record electroretinogram, visual evoked potentials and oscillatory potentials in awake, freely moving rats for pharmacological studies.
    Guarino I; Loizzo S; Lopez L; Fadda A; Loizzo A
    Neural Plast; 2004; 11(3-4):241-50. PubMed ID: 15656271
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of chondroitin sulfate on intraocular pressure in rats.
    Belforte N; Sande P; de Zavalía N; Knepper PA; Rosenstein RE
    Invest Ophthalmol Vis Sci; 2010 Nov; 51(11):5768-75. PubMed ID: 20574017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical imaging of visual cortical responses evoked by transcorneal electrical stimulation with different parameters.
    Ma Z; Cao P; Sun P; Li L; Lu Y; Yan Y; Chen Y; Chai X
    Invest Ophthalmol Vis Sci; 2014 Jul; 55(8):5320-31. PubMed ID: 25082881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monitoring Cortical Response and Electrode-Retina Impedance Under Epiretinal Stimulation in Rats.
    Xie H; Wang Y; Ye Z; Fang S; Xu Z; Wu T; Chan LLH
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1178-1187. PubMed ID: 34152987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrical stimulation of retinal neurons in epiretinal and subretinal configuration using a multicapacitor array.
    Eickenscheidt M; Jenkner M; Thewes R; Fromherz P; Zeck G
    J Neurophysiol; 2012 May; 107(10):2742-55. PubMed ID: 22357789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using independent component analysis to remove artifacts in visual cortex responses elicited by electrical stimulation of the optic nerve.
    Lu Y; Cao P; Sun J; Wang J; Li L; Ren Q; Chen Y; Chai X
    J Neural Eng; 2012 Apr; 9(2):026002. PubMed ID: 22306622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical imaging to evaluate retinal activation by electrical currents using suprachoroidal-transretinal stimulation.
    Okawa Y; Fujikado T; Miyoshi T; Sawai H; Kusaka S; Mihashi T; Hirohara Y; Tano Y
    Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4777-84. PubMed ID: 17898304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrophysiological evaluation of a chronically implanted electrode for suprachoroidal transretinal stimulation in rabbit eyes.
    Nishida K; Sakaguchi H; Kamei M; Saito T; Fujikado T; Nishida K
    J Artif Organs; 2019 Sep; 22(3):237-245. PubMed ID: 30945025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Can potentials from the visual cortex be elicited electrically despite severe retinal degeneration and a markedly reduced electroretinogram?
    Humayun M; Sato Y; Propst R; de Juan E
    Ger J Ophthalmol; 1995 Jan; 4(1):57-64. PubMed ID: 7728112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visually evoked potentials are differently modulated by the basal forebrain and the nucleus cuneiformis of freely moving rat.
    Bringmann A; Klingberg F
    Biomed Biochim Acta; 1989; 48(10):793-806. PubMed ID: 2634959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.