These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 25650630)

  • 1. Reconstitution of a transmembrane protein, the voltage-gated ion channel, KvAP, into giant unilamellar vesicles for microscopy and patch clamp studies.
    Garten M; Aimon S; Bassereau P; Toombes GE
    J Vis Exp; 2015 Jan; (95):52281. PubMed ID: 25650630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional reconstitution of a voltage-gated potassium channel in giant unilamellar vesicles.
    Aimon S; Manzi J; Schmidt D; Poveda Larrosa JA; Bassereau P; Toombes GE
    PLoS One; 2011; 6(10):e25529. PubMed ID: 21998666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple method for the reconstitution of membrane proteins into giant unilamellar vesicles.
    Varnier A; Kermarrec F; Blesneac I; Moreau C; Liguori L; Lenormand JL; Picollet-D'hahan N
    J Membr Biol; 2010 Feb; 233(1-3):85-92. PubMed ID: 20135103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroformation of giant unilamellar vesicles from erythrocyte membranes under low-salt conditions.
    Mikelj M; Praper T; Demič R; Hodnik V; Turk T; Anderluh G
    Anal Biochem; 2013 Apr; 435(2):174-80. PubMed ID: 23333270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Giant unilamellar vesicles formed by hybrid films of agarose and lipids display altered mechanical properties.
    Lira RB; Dimova R; Riske KA
    Biophys J; 2014 Oct; 107(7):1609-19. PubMed ID: 25296313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane shape modulates transmembrane protein distribution.
    Aimon S; Callan-Jones A; Berthaud A; Pinot M; Toombes GE; Bassereau P
    Dev Cell; 2014 Jan; 28(2):212-8. PubMed ID: 24480645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroformation of giant unilamellar vesicles in saline solution.
    Li Q; Wang X; Ma S; Zhang Y; Han X
    Colloids Surf B Biointerfaces; 2016 Nov; 147():368-375. PubMed ID: 27566225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroformation of giant unilamellar vesicles from native membranes and organic lipid mixtures for the study of lipid domains under physiological ionic-strength conditions.
    Montes LR; Ahyayauch H; Ibarguren M; Sot J; Alonso A; Bagatolli LA; Goñi FM
    Methods Mol Biol; 2010; 606():105-14. PubMed ID: 20013393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of electroformation protocol parameters on quality of homogeneous GUV populations.
    Drabik D; Doskocz J; Przybyło M
    Chem Phys Lipids; 2018 May; 212():88-95. PubMed ID: 29408045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroformation of phospholipid giant unilamellar vesicles in physiological phosphate buffer.
    Lefrançois P; Goudeau B; Arbault S
    Integr Biol (Camb); 2018 Jul; 10(7):429-434. PubMed ID: 29943778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Point-to-Plane Nonhomogeneous Electric-Field-Induced Simultaneous Formation of Giant Unilamellar Vesicles (GUVs) and Lipid Tubes.
    Zhu C; Zhang Y; Wang Y; Li Q; Mu W; Han X
    Chemistry; 2016 Feb; 22(9):2906-9. PubMed ID: 26756162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of electrical parameters on the electroformation of giant vesicles on ITO glass chips.
    Li W; Wang Q; Yang Z; Wang W; Cao Y; Hu N; Luo H; Liao Y; Yang J
    Colloids Surf B Biointerfaces; 2016 Apr; 140():560-566. PubMed ID: 26628330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of Cell-Sized Liposomes Incorporating a β-Barrel-Structured Porin through Rehydration of a Phospholipid-Membrane Protein Dried Film.
    Tosaka T; Kamiya K
    ACS Omega; 2024 Feb; 9(5):5911-5918. PubMed ID: 38343955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actin protein inside DMPC GUVs and its mechanical response to AC electric fields.
    Ángeles-Robles G; Ortiz-Dosal LC; Aranda-Espinoza H; Olivares-Illana V; Arauz-Lara JL; Aranda-Espinoza S
    Biochim Biophys Acta Biomembr; 2022 May; 1864(5):183883. PubMed ID: 35181295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca-mediated electroformation of cell-sized lipid vesicles.
    Tao F; Yang P
    Sci Rep; 2015 May; 5():9839. PubMed ID: 25950604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bending Rigidity, Capacitance, and Shear Viscosity of Giant Vesicle Membranes Prepared by Spontaneous Swelling, Electroformation, Gel-Assisted, and Phase Transfer Methods: A Comparative Study.
    Faizi HA; Tsui A; Dimova R; Vlahovska PM
    Langmuir; 2022 Aug; 38(34):10548-10557. PubMed ID: 35993569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant unilamellar vesicles containing phosphatidylinositol(4,5)bisphosphate: characterization and functionality.
    Carvalho K; Ramos L; Roy C; Picart C
    Biophys J; 2008 Nov; 95(9):4348-60. PubMed ID: 18502807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental platform for the functional investigation of membrane proteins in giant unilamellar vesicles.
    Dolder N; Müller P; von Ballmoos C
    Soft Matter; 2022 Aug; 18(31):5877-5893. PubMed ID: 35916307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charged giant unilamellar vesicles prepared by electroformation exhibit nanotubes and transbilayer lipid asymmetry.
    Steinkühler J; De Tillieux P; Knorr RL; Lipowsky R; Dimova R
    Sci Rep; 2018 Aug; 8(1):11838. PubMed ID: 30087440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AC-electric field dependent electroformation of giant lipid vesicles.
    Politano TJ; Froude VE; Jing B; Zhu Y
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):75-82. PubMed ID: 20413284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.