BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25650842)

  • 1. Fe-Cr-Al containing oxide semiconductors as potential solar water-splitting materials.
    Sliozberg K; Stein HS; Khare C; Parkinson BA; Ludwig A; Schuhmann W
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4883-9. PubMed ID: 25650842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial Synthesis and High-Throughput Characterization of Fe-V-O Thin-Film Materials Libraries for Solar Water Splitting.
    Kumari S; Gutkowski R; Junqueira JRC; Kostka A; Hengge K; Scheu C; Schuhmann W; Ludwig A
    ACS Comb Sci; 2018 Sep; 20(9):544-553. PubMed ID: 30102852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Exploration of Metal Vanadate Thin-Film Systems (M-V-O, M = Cu, Ag, W, Cr, Co, Fe) for Solar Water Splitting: Composition, Structure, Stability, and Photoelectrochemical Properties.
    Kumari S; Junqueira JRC; Schuhmann W; Ludwig A
    ACS Comb Sci; 2020 Dec; 22(12):844-857. PubMed ID: 33103893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput screening of thin-film semiconductor material libraries I: system development and case study for Ti-W-O.
    Sliozberg K; Schäfer D; Erichsen T; Meyer R; Khare C; Ludwig A; Schuhmann W
    ChemSusChem; 2015 Apr; 8(7):1270-8. PubMed ID: 25727402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput screening of thin-film semiconductor material libraries II: characterization of Fe-W-O libraries.
    Meyer R; Sliozberg K; Khare C; Schuhmann W; Ludwig A
    ChemSusChem; 2015 Apr; 8(7):1279-85. PubMed ID: 25727483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoelectrochemical scanning droplet cell microscopy (PE-SDCM).
    Kollender JP; Mardare AI; Hassel AW
    Chemphyschem; 2013 Feb; 14(3):560-7. PubMed ID: 23325677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Liquid Junction Photoelectrochemical Solar Cell Based on p-Type MeNH3PbI3 Perovskite with 1.05 V Open-Circuit Photovoltage.
    Hsu HY; Ji L; Ahn HS; Zhao J; Yu ET; Bard AJ
    J Am Chem Soc; 2015 Nov; 137(46):14758-64. PubMed ID: 26523921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation.
    Kment S; Schmuki P; Hubicka Z; Machala L; Kirchgeorg R; Liu N; Wang L; Lee K; Olejnicek J; Cada M; Gregora I; Zboril R
    ACS Nano; 2015 Jul; 9(7):7113-23. PubMed ID: 26083741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defect-Cluster-Boosted Solar Photoelectrochemical Water Splitting by n-Cu
    Chen YC; Chen YJ; Popescu R; Dong PH; Gerthsen D; Hsu YK
    ChemSusChem; 2019 Nov; 12(21):4859-4865. PubMed ID: 31469495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mg-Zr Cosubstituted Ta3N5 Photoanode for Lower-Onset-Potential Solar-Driven Photoelectrochemical Water Splitting.
    Seo J; Takata T; Nakabayashi M; Hisatomi T; Shibata N; Minegishi T; Domen K
    J Am Chem Soc; 2015 Oct; 137(40):12780-3. PubMed ID: 26426439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CuNb3O8: A p-Type Semiconducting Metal Oxide Photoelectrode.
    Joshi UA; Maggard PA
    J Phys Chem Lett; 2012 Jun; 3(11):1577-81. PubMed ID: 26285641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting.
    Qi X; She G; Huang X; Zhang T; Wang H; Mu L; Shi W
    Nanoscale; 2014 Mar; 6(6):3182-9. PubMed ID: 24500641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.
    Hisatomi T; Kubota J; Domen K
    Chem Soc Rev; 2014 Nov; 43(22):7520-35. PubMed ID: 24413305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal on metal oxide nanowire Co-catalyzed Si photocathode for solar water splitting.
    Sun K; Madsen K; Andersen P; Bao W; Sun Z; Wang D
    Nanotechnology; 2012 May; 23(19):194013. PubMed ID: 22539234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bandgap engineering of Fe2O3 with Cr - application to photoelectrochemical oxidation.
    Chemelewski WD; Mabayoje O; Tang D; Rettie AJ; Buddie Mullins C
    Phys Chem Chem Phys; 2016 Jan; 18(3):1644-8. PubMed ID: 26672489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the Si/TiO2/BiVO4 heterojunction on the onset potential of photocurrents for solar water oxidation.
    Jung H; Chae SY; Shin C; Min BK; Joo OS; Hwang YJ
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5788-96. PubMed ID: 25720751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial discovery through a distributed outreach program: investigation of the photoelectrolysis activity of p-type Fe, Cr, Al oxides.
    Rowley JG; Do TD; Cleary DA; Parkinson BA
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9046-52. PubMed ID: 24670777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localized photoelectrochemistry on a tungsten oxide-iron oxide thin film material library.
    Kollender JP; Mardare AI; Hassel AW
    ACS Comb Sci; 2013 Dec; 15(12):601-8. PubMed ID: 24151796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation.
    Iwashina K; Kudo A
    J Am Chem Soc; 2011 Aug; 133(34):13272-5. PubMed ID: 21797261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved charge separation via Fe-doping of copper tungstate photoanodes.
    Bohra D; Smith WA
    Phys Chem Chem Phys; 2015 Apr; 17(15):9857-66. PubMed ID: 25776231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.