These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 25651053)
1. A Variational approach to thin film hydrodynamics of binary mixtures. Xu X; Thiele U; Qian T J Phys Condens Matter; 2015 Mar; 27(8):085005. PubMed ID: 25651053 [TBL] [Abstract][Full Text] [Related]
2. Onsager's variational principle in active soft matter. Wang H; Qian T; Xu X Soft Matter; 2021 Apr; 17(13):3634-3653. PubMed ID: 33480912 [TBL] [Abstract][Full Text] [Related]
3. Onsager's variational principle in soft matter. Doi M J Phys Condens Matter; 2011 Jul; 23(28):284118. PubMed ID: 21709334 [TBL] [Abstract][Full Text] [Related]
4. Gradient dynamics description for films of mixtures and suspensions: dewetting triggered by coupled film height and concentration fluctuations. Thiele U; Todorova DV; Lopez H Phys Rev Lett; 2013 Sep; 111(11):117801. PubMed ID: 24074118 [TBL] [Abstract][Full Text] [Related]
5. Onsager's variational principle for the dynamics of a vesicle in a Poiseuille flow. Oya Y; Kawakatsu T J Chem Phys; 2018 Mar; 148(11):114905. PubMed ID: 29566523 [TBL] [Abstract][Full Text] [Related]
6. Anisotropic particle in viscous shear flow: Navier slip, reciprocal symmetry, and Jeffery orbit. Zhang J; Xu X; Qian T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033016. PubMed ID: 25871211 [TBL] [Abstract][Full Text] [Related]
7. Generalized Lorentz reciprocal theorem in complex fluids and in non-isothermal systems. Xu X; Qian T J Phys Condens Matter; 2019 Nov; 31(47):475101. PubMed ID: 31382257 [TBL] [Abstract][Full Text] [Related]
8. Variational methods and deep Ritz method for active elastic solids. Wang H; Zou B; Su J; Wang D; Xu X Soft Matter; 2022 Aug; 18(32):6015-6031. PubMed ID: 35920447 [TBL] [Abstract][Full Text] [Related]
9. Variational formulation and numerical accuracy of a quantitative phase-field model for binary alloy solidification with two-sided diffusion. Ohno M; Takaki T; Shibuta Y Phys Rev E; 2016 Jan; 93(1):012802. PubMed ID: 26871136 [TBL] [Abstract][Full Text] [Related]
10. Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. Eiken J; Böttger B; Steinbach I Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066122. PubMed ID: 16906929 [TBL] [Abstract][Full Text] [Related]
11. Generalized mapping of multi-body dissipative particle dynamics onto fluid compressibility and the Flory-Huggins theory. Jamali S; Boromand A; Khani S; Wagner J; Yamanoi M; Maia J J Chem Phys; 2015 Apr; 142(16):164902. PubMed ID: 25933786 [TBL] [Abstract][Full Text] [Related]
12. A variational approach to the growth dynamics of pre-stressed actin filament networks. John K; Stöter T; Misbah C J Phys Condens Matter; 2016 Sep; 28(37):375101. PubMed ID: 27420637 [TBL] [Abstract][Full Text] [Related]
13. Disjoining pressure of thin films stabilized by nonionic surfactants. Danov KD; Ivanov IB; Ananthapadmanabhan KP; Lips A Adv Colloid Interface Sci; 2006 Dec; 128-130():185-215. PubMed ID: 17207762 [TBL] [Abstract][Full Text] [Related]
14. Onsager's reciprocal relations in electrolyte solutions. I. Sedimentation and electroacoustics. Gourdin-Bertin S; Chassagne C; Bernard O; Jardat M J Chem Phys; 2015 Aug; 143(6):064708. PubMed ID: 26277157 [TBL] [Abstract][Full Text] [Related]
15. Problem-free time-dependent variational principle for open quantum systems. Joubert-Doriol L; Izmaylov AF J Chem Phys; 2015 Apr; 142(13):134107. PubMed ID: 25854228 [TBL] [Abstract][Full Text] [Related]
16. Predicting the formation and stability of amorphous small molecule binary mixtures from computationally determined Flory-Huggins interaction parameter and phase diagram. Pajula K; Taskinen M; Lehto VP; Ketolainen J; Korhonen O Mol Pharm; 2010 Jun; 7(3):795-804. PubMed ID: 20361760 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of dissipative ordered fluids. Sonnet AM; Virga EG Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 1):031705. PubMed ID: 11580353 [TBL] [Abstract][Full Text] [Related]
18. Microscopic derivation of discrete hydrodynamics. Español P; Anero JG; Zúñiga I J Chem Phys; 2009 Dec; 131(24):244117. PubMed ID: 20059064 [TBL] [Abstract][Full Text] [Related]
19. Contact line motion in confined liquid-gas systems: Slip versus phase transition. Xu X; Qian T J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449 [TBL] [Abstract][Full Text] [Related]
20. Variational theory for thermodynamics of thermal waves. Sieniutycz S; Berry RS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046132. PubMed ID: 12005951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]